Understanding the Genetic Architecture of Vitamin Status Biomarkers in the Genome-Wide Association Study Era: Biological Insights and Clinical Significance
William R Reay , Erin D Clarke , Clara Albiñana , Liang-Dar Hwang
{"title":"Understanding the Genetic Architecture of Vitamin Status Biomarkers in the Genome-Wide Association Study Era: Biological Insights and Clinical Significance","authors":"William R Reay , Erin D Clarke , Clara Albiñana , Liang-Dar Hwang","doi":"10.1016/j.advnut.2024.100344","DOIUrl":null,"url":null,"abstract":"<div><div>Vitamins play an intrinsic role in human health and are targets for clinical intervention through dietary or pharmacological approaches. Biomarkers of vitamin status are complex traits, measurable phenotypes that arise from an interplay between dietary and other environmental factors with a genetic component that is polygenic, meaning many genes are plausibly involved. Studying these genetic influences will improve our knowledge of fundamental vitamin biochemistry, refine estimates of the effects of vitamins on human health, and may in future prove clinically actionable. Here, we evaluate genetic studies of circulating and excreted biomarkers of vitamin status in the era of hypothesis-free genome-wide association studies (GWAS) that have provided unprecedented insights into the genetic architecture of these traits. We found that the most comprehensive and well-powered GWAS currently available were for circulating status biomarkers of vitamin A, C, D, and a subset of the B vitamins (B<sub>9</sub> and B<sub>12</sub>). The biology implicated by GWAS of measured biomarkers of each vitamin is then discussed, both in terms of key genes and higher-order processes. Across all major vitamins, there were genetic signals revealed by GWAS that could be directly linked with known vitamin biochemistry. We also outline how genetic variants associated with vitamin status biomarkers have been already extensively used to estimate causal effects of vitamins on human health outcomes, which is particularly important given the large number of randomized control trials of vitamin related interventions with null findings. Finally, we discuss the current evidence for the clinical applicability of findings from vitamin GWAS, along with future directions for the field to maximize the utility of these data.</div></div>","PeriodicalId":7349,"journal":{"name":"Advances in Nutrition","volume":"15 12","pages":"Article 100344"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nutrition","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2161831324001789","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamins play an intrinsic role in human health and are targets for clinical intervention through dietary or pharmacological approaches. Biomarkers of vitamin status are complex traits, measurable phenotypes that arise from an interplay between dietary and other environmental factors with a genetic component that is polygenic, meaning many genes are plausibly involved. Studying these genetic influences will improve our knowledge of fundamental vitamin biochemistry, refine estimates of the effects of vitamins on human health, and may in future prove clinically actionable. Here, we evaluate genetic studies of circulating and excreted biomarkers of vitamin status in the era of hypothesis-free genome-wide association studies (GWAS) that have provided unprecedented insights into the genetic architecture of these traits. We found that the most comprehensive and well-powered GWAS currently available were for circulating status biomarkers of vitamin A, C, D, and a subset of the B vitamins (B9 and B12). The biology implicated by GWAS of measured biomarkers of each vitamin is then discussed, both in terms of key genes and higher-order processes. Across all major vitamins, there were genetic signals revealed by GWAS that could be directly linked with known vitamin biochemistry. We also outline how genetic variants associated with vitamin status biomarkers have been already extensively used to estimate causal effects of vitamins on human health outcomes, which is particularly important given the large number of randomized control trials of vitamin related interventions with null findings. Finally, we discuss the current evidence for the clinical applicability of findings from vitamin GWAS, along with future directions for the field to maximize the utility of these data.
期刊介绍:
Advances in Nutrition (AN/Adv Nutr) publishes focused reviews on pivotal findings and recent research across all domains relevant to nutritional scientists and biomedical researchers. This encompasses nutrition-related research spanning biochemical, molecular, and genetic studies using experimental animal models, domestic animals, and human subjects. The journal also emphasizes clinical nutrition, epidemiology and public health, and nutrition education. Review articles concentrate on recent progress rather than broad historical developments.
In addition to review articles, AN includes Perspectives, Letters to the Editor, and supplements. Supplement proposals require pre-approval by the editor before submission. The journal features reports and position papers from the American Society for Nutrition, summaries of major government and foundation reports, and Nutrient Information briefs providing crucial details about dietary requirements, food sources, deficiencies, and other essential nutrient information. All submissions with scientific content undergo peer review by the Editors or their designees prior to acceptance for publication.