Pushpak Bhattacharjee, Miha Pakusch, Matthew Lacorcia, Eleonora Tresoldi, Alan F Rubin, Abby Foster, Laura King, Chris Y Chiu, Thomas W H Kay, John A Karas, Fergus J Cameron, Stuart I Mannering
{"title":"Proinsulin C-peptide is a major source of HLA-DQ8 restricted hybrid insulin peptides recognized by human islet-infiltrating CD4<sup>+</sup> T cells.","authors":"Pushpak Bhattacharjee, Miha Pakusch, Matthew Lacorcia, Eleonora Tresoldi, Alan F Rubin, Abby Foster, Laura King, Chris Y Chiu, Thomas W H Kay, John A Karas, Fergus J Cameron, Stuart I Mannering","doi":"10.1093/pnasnexus/pgae491","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4<sup>+</sup> T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4<sup>+</sup> T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4<sup>+</sup> T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4<sup>+</sup> T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4<sup>+</sup> T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"3 11","pages":"pgae491"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4+ T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4+ T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4+ T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4+ T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4+ T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4+ T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.