{"title":"Quantized Deep Learning Channel Model and Estimation for RIS-gMIMO Communication","authors":"Joydev Ghosh;César Vargas-Rosales;Van Nhan Vo;Chakchai So-In","doi":"10.1109/OJCOMS.2024.3487847","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surfaces (RISs) and multiuser gigantic multiple-input multiple-output (MU-gMIMO) systems are key technologies for enabling sixth-generation (6G) networks. Their numerous advantages include minimal path losses, high energy efficiency (EE), high spectrum efficiency (SE), high data rates, and compatibility with line-of-sight (LoS) and non-LoS (NLoS) paths. However, RIS-gMIMO faces numerous challenges, including pilot overhead during beam training due to a combined radiation field, high training overhead due to the cascaded channels between transceivers, inaccurate channel state information (CSI) due to the rapidly changing RIS-user equipment (UE) channel, and low-accuracy channel estimation caused by semipassive RISs. With semipassive RIS-gMIMO communications, we present a novel quantized deep learning (qDL) channel model. This proposed channel model is constructed via a radio frequency (RF) chain matrix, a combined radiation field, and a truncated activation output. To enhance the feature extraction performance and reduce the loss of the model, a novel qDL-based channel estimation scheme is also proposed to concurrently utilize denoising multilayer perceptron (DnMLP) units to satisfy the imposed sparsity constraint. The qDL scheme outperforms the previously developed benchmark schemes in terms of accuracy and performance according to the normalized mean squared error (NMSE) of the simulation results.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6932-6958"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737359","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737359/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable intelligent surfaces (RISs) and multiuser gigantic multiple-input multiple-output (MU-gMIMO) systems are key technologies for enabling sixth-generation (6G) networks. Their numerous advantages include minimal path losses, high energy efficiency (EE), high spectrum efficiency (SE), high data rates, and compatibility with line-of-sight (LoS) and non-LoS (NLoS) paths. However, RIS-gMIMO faces numerous challenges, including pilot overhead during beam training due to a combined radiation field, high training overhead due to the cascaded channels between transceivers, inaccurate channel state information (CSI) due to the rapidly changing RIS-user equipment (UE) channel, and low-accuracy channel estimation caused by semipassive RISs. With semipassive RIS-gMIMO communications, we present a novel quantized deep learning (qDL) channel model. This proposed channel model is constructed via a radio frequency (RF) chain matrix, a combined radiation field, and a truncated activation output. To enhance the feature extraction performance and reduce the loss of the model, a novel qDL-based channel estimation scheme is also proposed to concurrently utilize denoising multilayer perceptron (DnMLP) units to satisfy the imposed sparsity constraint. The qDL scheme outperforms the previously developed benchmark schemes in terms of accuracy and performance according to the normalized mean squared error (NMSE) of the simulation results.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.