Kernel mean embedding vs kernel density estimation: A quantum perspective

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physics Letters A Pub Date : 2024-11-09 DOI:10.1016/j.physleta.2024.130047
Yann Berquin
{"title":"Kernel mean embedding vs kernel density estimation: A quantum perspective","authors":"Yann Berquin","doi":"10.1016/j.physleta.2024.130047","DOIUrl":null,"url":null,"abstract":"<div><div>This short study investigates the link between kernel methods and quantum mechanics. Density operators representing ensembles of pure states of sample wave functions are used in place of probability densities and Kraus operator is used to embed samples. Results show that using density operators associated to different quantum systems along with embedded samples allows to recover kernel density estimation as well as kernel mean embedding equations. Results are illustrated with a simple example using discrete orthogonal wavelet transform.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130047"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007412","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This short study investigates the link between kernel methods and quantum mechanics. Density operators representing ensembles of pure states of sample wave functions are used in place of probability densities and Kraus operator is used to embed samples. Results show that using density operators associated to different quantum systems along with embedded samples allows to recover kernel density estimation as well as kernel mean embedding equations. Results are illustrated with a simple example using discrete orthogonal wavelet transform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核均值嵌入与核密度估计:量子视角
这项简短的研究探讨了核方法与量子力学之间的联系。代表样本波函数纯态集合的密度算子被用来代替概率密度,克劳斯算子被用来嵌入样本。结果表明,使用与不同量子系统相关的密度算子和嵌入样本,可以恢复核密度估计和核均值嵌入方程。使用离散正交小波变换的简单示例对结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
期刊最新文献
Editorial Board On an extended semi-discrete matrix coupled dispersionless system: Darboux transformation and explicit solutions DASH: A novel method for dynamically selecting key nodes to spread information rapidly under the graph burning model High thermal energy storage of the two-dimensional Al2Te3 semiconductor: DFT study of stability, electronic, phonon, thermal, and optical properties based on GGA and HSE06 Emergency evacuation dynamics based on evolutionary game theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1