Multi-cylinder leveling control systems based on dual-valve parallel and adaptive eccentric torque suppression

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Mechatronics Pub Date : 2024-11-09 DOI:10.1016/j.mechatronics.2024.103269
Heng Du , Ye Wu , Zhizhong Zhang , Qigang Wang , Jiahe Luo , Jinghui Fang
{"title":"Multi-cylinder leveling control systems based on dual-valve parallel and adaptive eccentric torque suppression","authors":"Heng Du ,&nbsp;Ye Wu ,&nbsp;Zhizhong Zhang ,&nbsp;Qigang Wang ,&nbsp;Jiahe Luo ,&nbsp;Jinghui Fang","doi":"10.1016/j.mechatronics.2024.103269","DOIUrl":null,"url":null,"abstract":"<div><div>In the composite material hydraulic press, the mismatched velocities between the movable beam and the multiple leveling cylinders produce disturbing superfluous forces, and the eccentric torque causes the movable beam to tilt when pressed. They severely damage the leveling displacement accuracy and limit the implementation of muti-cylinder system in higher precision field. A dual-loop leveling control strategy is proposed, comprising a dual-valve parallel pressure inner loop and an adaptive control displacement outer loop. Firstly, a dual-valve parallel scheme is proposed in the pressure inner loop, where a compensation valve is added in parallel with the original single-valve. A variable compensation valve spool algorithm is designed, considering both velocity and displacement to mitigate the effects of superfluous forces and achieve precise and smooth leveling. Secondly, a control strategy for the adaptive displacement outer loop is designed to estimate and compensate for eccentric torque. An innovative torque decoupling algorithm is formulated to overcome the challenge of indeterminate coupling relations between inner and outer loops caused by the adaptive incorporation of dual-loop control. Then, eccentric load compensation torque is decoupled to the multiple leveling cylinders and derives the desired pressure for the inner loop. The inner loop suppresses the disturbance of eccentric torque to enhance robust leveling precision. Finally, the effectiveness of the proposed strategy was validated through experimentation on the constructed hydraulic press leveling system test bench. The control strategy presented in this paper provides a reference for achieving smooth and precise control in multi-cylinder systems.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103269"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741582400134X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the composite material hydraulic press, the mismatched velocities between the movable beam and the multiple leveling cylinders produce disturbing superfluous forces, and the eccentric torque causes the movable beam to tilt when pressed. They severely damage the leveling displacement accuracy and limit the implementation of muti-cylinder system in higher precision field. A dual-loop leveling control strategy is proposed, comprising a dual-valve parallel pressure inner loop and an adaptive control displacement outer loop. Firstly, a dual-valve parallel scheme is proposed in the pressure inner loop, where a compensation valve is added in parallel with the original single-valve. A variable compensation valve spool algorithm is designed, considering both velocity and displacement to mitigate the effects of superfluous forces and achieve precise and smooth leveling. Secondly, a control strategy for the adaptive displacement outer loop is designed to estimate and compensate for eccentric torque. An innovative torque decoupling algorithm is formulated to overcome the challenge of indeterminate coupling relations between inner and outer loops caused by the adaptive incorporation of dual-loop control. Then, eccentric load compensation torque is decoupled to the multiple leveling cylinders and derives the desired pressure for the inner loop. The inner loop suppresses the disturbance of eccentric torque to enhance robust leveling precision. Finally, the effectiveness of the proposed strategy was validated through experimentation on the constructed hydraulic press leveling system test bench. The control strategy presented in this paper provides a reference for achieving smooth and precise control in multi-cylinder systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双气门并联和自适应偏心扭矩抑制的多气缸调平控制系统
在复合材料液压机中,活动横梁与多个调平油缸之间的速度不匹配会产生干扰赘力,偏心扭矩会导致活动横梁在受压时倾斜。这些因素严重破坏了调平位移精度,限制了多油缸系统在更高精度领域的应用。本文提出了一种由双阀并联压力内环和自适应控制位移外环组成的双环调平控制策略。首先,在压力内环中提出了双阀并联方案,即在原有单阀的基础上并联一个补偿阀。设计了一种可变补偿阀阀芯算法,同时考虑了速度和位移,以减轻多余力的影响,实现精确平稳的调平。其次,设计了自适应位移外环的控制策略,以估计和补偿偏心扭矩。制定了一种创新的扭矩解耦算法,以克服自适应双环控制带来的内外环间不确定耦合关系的挑战。然后,偏心负载补偿扭矩与多个调平气缸解耦,并为内环导出所需的压力。内环抑制偏心扭矩的干扰,从而提高稳健的调平精度。最后,通过在构建的液压机调平系统试验台上进行实验,验证了所提策略的有效性。本文提出的控制策略为实现多缸系统的平稳和精确控制提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
期刊最新文献
FPAA-based control of a high-speed flexure-guided AFM nanopositioner Multi-cylinder leveling control systems based on dual-valve parallel and adaptive eccentric torque suppression Active safety control for distributed drive electric vehicle with unilateral motor fault based on mechanical redundancy Recursive terminal sliding mode control for the 3D overhead crane systems with motion planning Stiffness-fault-tolerant control strategy for elastic actuators with interaction impedance adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1