Wolf-Stefan Benedix , Sebastian Hegler , Christoph Statz , Ronny Hahnel , Dirk Plettemeier , Valérie Ciarletti
{"title":"The ExoMars 2028 WISDOM antenna assembly: Description and characterization","authors":"Wolf-Stefan Benedix , Sebastian Hegler , Christoph Statz , Ronny Hahnel , Dirk Plettemeier , Valérie Ciarletti","doi":"10.1016/j.pss.2024.105995","DOIUrl":null,"url":null,"abstract":"<div><div>While ground penetrating radars have been extensively researched on Earth, the high-resolution exploration and imaging of the shallow subsurface of celestial bodies in our solar system is still in its early stages, with only a handful of systems capable of the task.</div><div>Designing high-resolution radar systems can be a complex task due to the large frequency bandwidth required by the antennas to achieve high vertical resolution. The WISDOM GPR, as part of the 2028 ExoMars mission, is a highly capable and challenging instrument in this context, given its fully-polarimetric setup and mission constraints on the operating environment, robustness, as well as mass and size budget.</div><div>This paper outlines the development and characterization process of the WISDOM antenna assembly, which can serve as a model for future radar systems. Furthermore, it presents the results of the antenna characterization as the foundation for instrument calibration and optimal radar sounding outcomes.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"253 ","pages":"Article 105995"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324001594","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
While ground penetrating radars have been extensively researched on Earth, the high-resolution exploration and imaging of the shallow subsurface of celestial bodies in our solar system is still in its early stages, with only a handful of systems capable of the task.
Designing high-resolution radar systems can be a complex task due to the large frequency bandwidth required by the antennas to achieve high vertical resolution. The WISDOM GPR, as part of the 2028 ExoMars mission, is a highly capable and challenging instrument in this context, given its fully-polarimetric setup and mission constraints on the operating environment, robustness, as well as mass and size budget.
This paper outlines the development and characterization process of the WISDOM antenna assembly, which can serve as a model for future radar systems. Furthermore, it presents the results of the antenna characterization as the foundation for instrument calibration and optimal radar sounding outcomes.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research