{"title":"Deep semantics-preserving cross-modal hashing","authors":"Zhihui Lai , Xiaomei Fang , Heng Kong","doi":"10.1016/j.bdr.2024.100494","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-modal hashing has been paid widespread attention in recent years due to its outstanding performance in cross-modal data retrieval. Cross-modal hashing can be decomposed into two steps, i.e., the feature learning and the binarization. However, most existing cross-modal hash methods do not take the supervisory information of the data into consideration during binary quantization, and thus often fail to adequately preserve semantic information. To solve these problems, this paper proposes a novel deep cross-modal hashing method called deep semantics-preserving cross-modal hashing (DSCMH), which makes full use of intra and inter-modal semantic information to improve the model's performance. Moreover, by designing a label network for semantic alignment during the binarization process, DSCMH's performance can be further improved. In order to verify the performance of the proposed method, extensive experiments were conducted on four big datasets. The results show that the proposed method is better than most of the existing cross-modal hashing methods. In addition, the ablation experiment shows that the proposed new regularized terms all have positive effects on the model's performances in cross-modal retrieval. The code of this paper can be downloaded from <span><span>http://www.scholat.com/laizhihui</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"38 ","pages":"Article 100494"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000698","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-modal hashing has been paid widespread attention in recent years due to its outstanding performance in cross-modal data retrieval. Cross-modal hashing can be decomposed into two steps, i.e., the feature learning and the binarization. However, most existing cross-modal hash methods do not take the supervisory information of the data into consideration during binary quantization, and thus often fail to adequately preserve semantic information. To solve these problems, this paper proposes a novel deep cross-modal hashing method called deep semantics-preserving cross-modal hashing (DSCMH), which makes full use of intra and inter-modal semantic information to improve the model's performance. Moreover, by designing a label network for semantic alignment during the binarization process, DSCMH's performance can be further improved. In order to verify the performance of the proposed method, extensive experiments were conducted on four big datasets. The results show that the proposed method is better than most of the existing cross-modal hashing methods. In addition, the ablation experiment shows that the proposed new regularized terms all have positive effects on the model's performances in cross-modal retrieval. The code of this paper can be downloaded from http://www.scholat.com/laizhihui.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.