Regulation of CN-related optical transitions and non-radiative capture cross-section by biaxial strain in AlN

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physics Letters A Pub Date : 2024-11-06 DOI:10.1016/j.physleta.2024.130034
Qian-Ji Wang , Hai-Shan Zhang , Lin Shi , Yun-Hua Cheng , Jian Gong
{"title":"Regulation of CN-related optical transitions and non-radiative capture cross-section by biaxial strain in AlN","authors":"Qian-Ji Wang ,&nbsp;Hai-Shan Zhang ,&nbsp;Lin Shi ,&nbsp;Yun-Hua Cheng ,&nbsp;Jian Gong","doi":"10.1016/j.physleta.2024.130034","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon-related 4.7 eV absorption band and small in-plane strains in AlN may have some significant effects on its application in optoelectronic devices. Based on the accurate hybrid density functional calculation, we investigate the transition energy levels, photo-transition processes, and hole capture cross-sections of C<sub>N</sub> defect. We propose that the transition from −1 to 0 charge states of C<sub>N</sub> defect may be responsible for the 4.7 eV absorption band in AlN. In addition, the C<sub>N</sub> defect-related absorption and emission peaks are linearly dependent on the biaxial strain in the range of −3% to +3%, and the hole non-radiative capture rate by the C<sub>N</sub> center at the −3% biaxial strain is only 3.65% of that at the +3% biaxial strain. This work provides an effective approach for regulating the charge carrier capture ability of the defect center and improving device performance.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130034"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037596012400728X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-related 4.7 eV absorption band and small in-plane strains in AlN may have some significant effects on its application in optoelectronic devices. Based on the accurate hybrid density functional calculation, we investigate the transition energy levels, photo-transition processes, and hole capture cross-sections of CN defect. We propose that the transition from −1 to 0 charge states of CN defect may be responsible for the 4.7 eV absorption band in AlN. In addition, the CN defect-related absorption and emission peaks are linearly dependent on the biaxial strain in the range of −3% to +3%, and the hole non-radiative capture rate by the CN center at the −3% biaxial strain is only 3.65% of that at the +3% biaxial strain. This work provides an effective approach for regulating the charge carrier capture ability of the defect center and improving device performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化铝中双轴应变对 CN 相关光学转变和非辐射俘获截面的调控
氮化铝中与碳相关的 4.7 eV 吸收带和较小的面内应变可能会对其在光电器件中的应用产生重大影响。基于精确的混合密度泛函计算,我们研究了 CN 缺陷的跃迁能级、光跃迁过程和空穴捕获截面。我们提出,CN 缺陷从 -1 电荷态到 0 电荷态的跃迁可能是导致 AlN 中出现 4.7 eV 吸收带的原因。此外,在 -3% 至 +3% 的双轴应变范围内,与 CN 缺陷相关的吸收峰和发射峰与双轴应变呈线性关系,而 CN 中心在 -3% 双轴应变下的空穴非辐射捕获率仅为 +3% 双轴应变下的 3.65%。这项工作为调节缺陷中心的电荷载流子捕获能力和提高器件性能提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
期刊最新文献
Editorial Board On an extended semi-discrete matrix coupled dispersionless system: Darboux transformation and explicit solutions DASH: A novel method for dynamically selecting key nodes to spread information rapidly under the graph burning model High thermal energy storage of the two-dimensional Al2Te3 semiconductor: DFT study of stability, electronic, phonon, thermal, and optical properties based on GGA and HSE06 Emergency evacuation dynamics based on evolutionary game theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1