{"title":"Photoelectrocatalytic water splitting for efficient hydrogen production: A strategic review","authors":"Leena V. Bora , Nisha V. Bora","doi":"10.1016/j.fuel.2024.133642","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen generation via water splitting is the most captivating one, out of the different technologies employed for its production, owing to the abundance of the essential raw material (water) on our planet. Photoelectrocatalysis (PEC), which combines two powerful advanced oxidation processes, viz., photocatalysis and electrocatalysis, has the potential to use solar energy to split water into Oxygen and Hydrogen at ambient temperature and pressure. This article is a strategic review that discusses the ingenious techniques for increasing the overall efficiency of a PEC process for the purpose of Hydrogen production via water splitting. It analyses the various schemes and parameters of electrode engineering, electrolyte effects and cell architecture. The principal emphasis is on skilled photoelectrode development and process intensification by synergistic operations. This review provides a reference for a comparative study of novel developments and new directions in PEC for the production of Hydrogen, thus encouraging propitious research and rewarding commercialization.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133642"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124027911","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen generation via water splitting is the most captivating one, out of the different technologies employed for its production, owing to the abundance of the essential raw material (water) on our planet. Photoelectrocatalysis (PEC), which combines two powerful advanced oxidation processes, viz., photocatalysis and electrocatalysis, has the potential to use solar energy to split water into Oxygen and Hydrogen at ambient temperature and pressure. This article is a strategic review that discusses the ingenious techniques for increasing the overall efficiency of a PEC process for the purpose of Hydrogen production via water splitting. It analyses the various schemes and parameters of electrode engineering, electrolyte effects and cell architecture. The principal emphasis is on skilled photoelectrode development and process intensification by synergistic operations. This review provides a reference for a comparative study of novel developments and new directions in PEC for the production of Hydrogen, thus encouraging propitious research and rewarding commercialization.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.