{"title":"Synthesis of molybdenum disulfide/covalent organic frameworks composite for efficient solar-driven hydrogen production and pollutant degradation","authors":"Guanglei Tan , Zhengri Shao , Dan Tang","doi":"10.1016/j.materresbull.2024.113187","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) are recently recognized photocatalysts with outstanding performance in photocatalysis. Typically, COFs exhibit significant hydrogen evolution activity in the presence of noble metal co-catalysts. Nevertheless, due to their insufficient availability and high cost, it is essential to replace noble metal co-catalysts with cost-effective and abundant alternatives. Herein, we have substituted noble metal co-catalyst with MoS<sub>2</sub> and designed MoS<sub>2</sub> linked hydrazone-based COF composite for exceptional photocatalysis. Various characterization techniques provide evidence that the MoS<sub>2</sub>/COF composite has been successfully synthesized. The as-synthesized MoS<sub>2</sub>/COF photocatalyst exhibited a hydrogen production rate of 115 µmol·g<sup>‒1</sup>h<sup>‒1</sup> and achieved 98 % degradation of Rhodamine B (RhB) dye under visible light irradiation for 2 h The photoluminescence (PL) spectra show that the correlation between MoS<sub>2</sub> and COF improves charge carrier's separation rate and minimizes recombination, thereby enhancing photocatalytic activity. This study aims to broaden the application of hydrazone-based COFs composites in energy production and environmental remediation.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113187"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005178","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) are recently recognized photocatalysts with outstanding performance in photocatalysis. Typically, COFs exhibit significant hydrogen evolution activity in the presence of noble metal co-catalysts. Nevertheless, due to their insufficient availability and high cost, it is essential to replace noble metal co-catalysts with cost-effective and abundant alternatives. Herein, we have substituted noble metal co-catalyst with MoS2 and designed MoS2 linked hydrazone-based COF composite for exceptional photocatalysis. Various characterization techniques provide evidence that the MoS2/COF composite has been successfully synthesized. The as-synthesized MoS2/COF photocatalyst exhibited a hydrogen production rate of 115 µmol·g‒1h‒1 and achieved 98 % degradation of Rhodamine B (RhB) dye under visible light irradiation for 2 h The photoluminescence (PL) spectra show that the correlation between MoS2 and COF improves charge carrier's separation rate and minimizes recombination, thereby enhancing photocatalytic activity. This study aims to broaden the application of hydrazone-based COFs composites in energy production and environmental remediation.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.