Poromechanical cohesive interface element with combined Mode I-II cohesive zone elastoplasticity for simulating fracture in fluid-saturated porous media
Dafer K. Jadaan , Jessica Rimsza , Reese Jones , Richard A. Regueiro
{"title":"Poromechanical cohesive interface element with combined Mode I-II cohesive zone elastoplasticity for simulating fracture in fluid-saturated porous media","authors":"Dafer K. Jadaan , Jessica Rimsza , Reese Jones , Richard A. Regueiro","doi":"10.1016/j.compstruc.2024.107554","DOIUrl":null,"url":null,"abstract":"<div><div>A combined Mode I-II cohesive zone (CZ) elasto-plastic constitutive model, and a two-dimensional (2D) cohesive interface element (CIE) are formulated and implemented at small strain within an ABAQUS User Element (UEL) for simulating 2D crack nucleation and propagation in fluid-saturated porous media. The CZ model mitigates problems of convergence for the global Newton-Raphson solver within ABAQUS, which when combined with a viscous stabilization procedure allows for simulation of post-peak response under load control for coupled poromechanical finite element analysis, such as concrete gravity dam stability analysis. Verification examples are presented, along with a more complex ambient limestone-concrete wedge fracture experiment, water-pressurized concrete wedge experiment, and concrete gravity dam stability analyses. A calibration procedure for estimating the CZ parameters is demonstrated with the limestone-concrete wedge fracture process. For the water-pressurized concrete wedge fracture experiment it is shown that the inherent time-dependence of the poromechanical CIE analysis provides a good match with experimental force versus displacement results at various crack mouth opening rates, yet misses the pore water pressure evolution ahead of the crack tip propagation. This is likely a result of the concrete being partially-saturated in the experiment, whereas the finite element analysis assumes fully water saturated concrete. For the concrete gravity dam analysis, it is shown that base crack opening and associated water uplift pressure leads to a reduced Factor of Safety, which is confirmed by separate analytical calculations.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"305 ","pages":"Article 107554"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002839","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A combined Mode I-II cohesive zone (CZ) elasto-plastic constitutive model, and a two-dimensional (2D) cohesive interface element (CIE) are formulated and implemented at small strain within an ABAQUS User Element (UEL) for simulating 2D crack nucleation and propagation in fluid-saturated porous media. The CZ model mitigates problems of convergence for the global Newton-Raphson solver within ABAQUS, which when combined with a viscous stabilization procedure allows for simulation of post-peak response under load control for coupled poromechanical finite element analysis, such as concrete gravity dam stability analysis. Verification examples are presented, along with a more complex ambient limestone-concrete wedge fracture experiment, water-pressurized concrete wedge experiment, and concrete gravity dam stability analyses. A calibration procedure for estimating the CZ parameters is demonstrated with the limestone-concrete wedge fracture process. For the water-pressurized concrete wedge fracture experiment it is shown that the inherent time-dependence of the poromechanical CIE analysis provides a good match with experimental force versus displacement results at various crack mouth opening rates, yet misses the pore water pressure evolution ahead of the crack tip propagation. This is likely a result of the concrete being partially-saturated in the experiment, whereas the finite element analysis assumes fully water saturated concrete. For the concrete gravity dam analysis, it is shown that base crack opening and associated water uplift pressure leads to a reduced Factor of Safety, which is confirmed by separate analytical calculations.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.