{"title":"Polarization-maintaining fiber based macehead shaped interferometric sensor for accurate measurement of refractive index and temperature","authors":"Ashish Kumar, Abhishek Joshi, Hyoung Won Baac","doi":"10.1016/j.measurement.2024.116104","DOIUrl":null,"url":null,"abstract":"<div><div>A macehead-shaped bent polarization-maintaining fiber-based interferometric sensing structure called MBPIS is described and experimentally demonstrated for precise temperature and refractive index measurement. The sensor’s working principle is explained by simulating the spatial distribution of the field intensity in straight and bending PANDA fibers. A maximum extinction ratio (∼21 dBm) for the interference dip wavelength (1527.825 nm) in the sensor’s output spectrum was optimized by manipulating the birefringence of propagating fiber modes by adjusting PMF’s bending diameter from 17 to 11 mm. The phase difference changes between these fiber modes due to temperature and RI-induced birefringence cause a shift in the interference spectrum. The sensor’s highest RI sensitivity has been seen at −259.32 nm/RIU for a wide range of analytes from 1.3333 to 1.3579. In contrast, the highest temperature sensitivities evaluated for the temperature range of 0 ∼ 100 ℃ are −220 pm/℃ and −0.139 dBm/℃, respectively.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116104"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124019894","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A macehead-shaped bent polarization-maintaining fiber-based interferometric sensing structure called MBPIS is described and experimentally demonstrated for precise temperature and refractive index measurement. The sensor’s working principle is explained by simulating the spatial distribution of the field intensity in straight and bending PANDA fibers. A maximum extinction ratio (∼21 dBm) for the interference dip wavelength (1527.825 nm) in the sensor’s output spectrum was optimized by manipulating the birefringence of propagating fiber modes by adjusting PMF’s bending diameter from 17 to 11 mm. The phase difference changes between these fiber modes due to temperature and RI-induced birefringence cause a shift in the interference spectrum. The sensor’s highest RI sensitivity has been seen at −259.32 nm/RIU for a wide range of analytes from 1.3333 to 1.3579. In contrast, the highest temperature sensitivities evaluated for the temperature range of 0 ∼ 100 ℃ are −220 pm/℃ and −0.139 dBm/℃, respectively.
期刊介绍:
Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.