Efficient hydrogen evolution reaction in alkaline seawater and urea using flower-like Co-NiP@VP/NF electrocatalyst

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-11-13 DOI:10.1016/j.fuel.2024.133717
Min Liu , Han Zhao , Xiaoqiang Du , Xiaoshuang Zhang
{"title":"Efficient hydrogen evolution reaction in alkaline seawater and urea using flower-like Co-NiP@VP/NF electrocatalyst","authors":"Min Liu ,&nbsp;Han Zhao ,&nbsp;Xiaoqiang Du ,&nbsp;Xiaoshuang Zhang","doi":"10.1016/j.fuel.2024.133717","DOIUrl":null,"url":null,"abstract":"<div><div>With the depletion of global energy, increasingly severe environmental problems and the pursuit of renewable energy and clean energy, electrocatalytic water splitting has become well-known as an efficient, stable and simple method of hydrogen production. In this paper, M−NiP@VP/NF (M=Co, Mo and Cr) composites were synthesized on nickel foam with low cost, abundant reserves, high conductivity and supportive properties by simple hydrothermal and phosphating methods. Among them, Co-NiP@VP/NF has excellent electrochemical catalytic activity for hydrogen evolution reaction (HER) in seawater electrolyte containing 1.0 M KOH and urea solution containing 1.0 M KOH due to its abundant active sites, dense nanoflower-like structures and accelerated electron transfer rate. The material has a very rich nanoflower-like structure that exposes many contact areas and provides active sites, which also provides the basis for its superior catalytic properties. Notably, the Co-NiP@VP/NF catalyst present overpotential of only 164 mV at 100 mA cm<sup>−2</sup> in 1.0 M KOH + seawater electrolyte solution and has the lowest Tafel slope (65.41 mV dec<sup>-1</sup>) for HER. In addition, we also carried out a durability measurement for 15 h, and the result showed a sharp decline at first and then relatively stable. Finally, we also compared the study with other literature, and the catalytic activity of this catalyst is much better than that of most other catalysts. This paper provides a reasonable synthesis method with excellent performance, which provides a possibility for the subsequent extensive application and popularization of seawater.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133717"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028667","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the depletion of global energy, increasingly severe environmental problems and the pursuit of renewable energy and clean energy, electrocatalytic water splitting has become well-known as an efficient, stable and simple method of hydrogen production. In this paper, M−NiP@VP/NF (M=Co, Mo and Cr) composites were synthesized on nickel foam with low cost, abundant reserves, high conductivity and supportive properties by simple hydrothermal and phosphating methods. Among them, Co-NiP@VP/NF has excellent electrochemical catalytic activity for hydrogen evolution reaction (HER) in seawater electrolyte containing 1.0 M KOH and urea solution containing 1.0 M KOH due to its abundant active sites, dense nanoflower-like structures and accelerated electron transfer rate. The material has a very rich nanoflower-like structure that exposes many contact areas and provides active sites, which also provides the basis for its superior catalytic properties. Notably, the Co-NiP@VP/NF catalyst present overpotential of only 164 mV at 100 mA cm−2 in 1.0 M KOH + seawater electrolyte solution and has the lowest Tafel slope (65.41 mV dec-1) for HER. In addition, we also carried out a durability measurement for 15 h, and the result showed a sharp decline at first and then relatively stable. Finally, we also compared the study with other literature, and the catalytic activity of this catalyst is much better than that of most other catalysts. This paper provides a reasonable synthesis method with excellent performance, which provides a possibility for the subsequent extensive application and popularization of seawater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用花状 Co-NiP@VP/NF 电催化剂在碱性海水和尿素中进行高效氢进化反应
随着全球能源的日益枯竭、环境问题的日益严峻以及人们对可再生能源和清洁能源的追求,电催化水分离作为一种高效、稳定、简单的制氢方法已广为人知。本文通过简单的水热法和磷化法,在泡沫镍上合成了具有低成本、储量丰富、高导电性和支持性的 M-NiP@VP/NF (M=Co、Mo 和 Cr)复合材料。其中,Co-NiP@VP/NF 在含 1.0 M KOH 的海水电解液和含 1.0 M KOH 的尿素溶液中,因其丰富的活性位点、致密的纳米花状结构和加速的电子传递速率,对氢进化反应(HER)具有优异的电化学催化活性。该材料具有非常丰富的纳米花状结构,暴露出许多接触区域并提供了活性位点,这也为其卓越的催化性能奠定了基础。值得注意的是,在 1.0 M KOH + 海水电解质溶液中,Co-NiP@VP/NF 催化剂在 100 mA cm-2 时的过电位仅为 164 mV,并且具有最低的 HER 塔菲尔斜率(65.41 mV dec-1)。此外,我们还进行了 15 小时的耐久性测量,结果显示起初会急剧下降,然后相对稳定。最后,我们还将研究结果与其他文献进行了比较,发现该催化剂的催化活性远远优于其他大多数催化剂。本文提供了一种性能优良的合理合成方法,为后续海水的广泛应用和推广提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Highly efficient Zr-based coordination polymer for catalytic transfer hydrogenation of 5-hydroxymethylfurfural: Tuning acid strength and enhancing stability Engineering noble metal-free nickel catalysts for highly efficient liquid fuel production from waste polyolefins under mild conditions A functional fluorine (F)-containing oxidiser of nano-networked NH4CuF3 to improve the combustion efficiency of Al powder Gold nanocatalysts supported on Mono-/Mixed oxides for efficient synthesis of methyl methacrylate Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1