Ahmad Yusril Aminullah , Sukarni Sukarni , Retno Wulandari , Muhammad Shahbaz
{"title":"Magnetic field effect on mechanism and syngas products of microalgae pyrolysis with activated carbon catalysts","authors":"Ahmad Yusril Aminullah , Sukarni Sukarni , Retno Wulandari , Muhammad Shahbaz","doi":"10.1016/j.fuel.2024.133617","DOIUrl":null,"url":null,"abstract":"<div><div>H<sub>2</sub>-rich syngas has various applications, but it is primarily produced from fossil fuels, contributing to greenhouse gas emissions. Its conversion from renewable sources, such as biomass, can bring environmental benefits and help achieve a reduction in global temperatures below 2 °C. Biomass conversion through the thermal process offers a promising solution for syngas generation. Pyrolysis is appealing as it is more cost-effective than other thermal conversion technologies. The objective of this study is to investigate the conversion of <em>Spirulina</em> microalgae (SP) into syngas (CH<sub>4</sub>, H<sub>2</sub>, and CO<sub>2</sub>) using activated carbon (AC) as a catalyst under the influence of a magnetic field, employing a fixed-bed pyrolysis reactor. Characterization on raw and char SP reveals those biomasses’s main component affecting volatile population, CH<sub>4</sub> and H<sub>2</sub> correlated with protein and lipid decomposition; on the other hand, CO<sub>2</sub> product depends on carbohydrates degradation. An investigation of fresh and spent AC indicates that the main catalytic interaction between pyrolysis vapor and AC is through the Van der Waals force. The magnetic field helps prevent pore blocking on AC, which is proved by specific surface analysis results indicating in a positive synergistic effect between the magnetic field and AC. Activated carbon and magnetic field affected syngas production through a series of pyrolysis vapor cracking, deoxygenation, and hydrocarbon declustering, enhancing CH<sub>4</sub> and H<sub>2</sub> production by 28.66 and 8.4 %, respectively, and suppressing CO<sub>2</sub> by 28.64 % compared to SP pyrolysis alone.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133617"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124027662","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
H2-rich syngas has various applications, but it is primarily produced from fossil fuels, contributing to greenhouse gas emissions. Its conversion from renewable sources, such as biomass, can bring environmental benefits and help achieve a reduction in global temperatures below 2 °C. Biomass conversion through the thermal process offers a promising solution for syngas generation. Pyrolysis is appealing as it is more cost-effective than other thermal conversion technologies. The objective of this study is to investigate the conversion of Spirulina microalgae (SP) into syngas (CH4, H2, and CO2) using activated carbon (AC) as a catalyst under the influence of a magnetic field, employing a fixed-bed pyrolysis reactor. Characterization on raw and char SP reveals those biomasses’s main component affecting volatile population, CH4 and H2 correlated with protein and lipid decomposition; on the other hand, CO2 product depends on carbohydrates degradation. An investigation of fresh and spent AC indicates that the main catalytic interaction between pyrolysis vapor and AC is through the Van der Waals force. The magnetic field helps prevent pore blocking on AC, which is proved by specific surface analysis results indicating in a positive synergistic effect between the magnetic field and AC. Activated carbon and magnetic field affected syngas production through a series of pyrolysis vapor cracking, deoxygenation, and hydrocarbon declustering, enhancing CH4 and H2 production by 28.66 and 8.4 %, respectively, and suppressing CO2 by 28.64 % compared to SP pyrolysis alone.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.