Sebastian Stammkötter , Jochen Tenkamp , Mirko Teschke , Kai Donnerbauer , Alexander Koch , Timo Platt , Dirk Biermann , Frank Walther
{"title":"Fatigue and short crack assessment of powder bed fusion laser-based fabricated AlSi10Mg miniature specimens under alternating bending load","authors":"Sebastian Stammkötter , Jochen Tenkamp , Mirko Teschke , Kai Donnerbauer , Alexander Koch , Timo Platt , Dirk Biermann , Frank Walther","doi":"10.1016/j.matdes.2024.113412","DOIUrl":null,"url":null,"abstract":"<div><div>Al-Si alloys are commonly used in the automotive and aircraft industry because of their excellent strength-to-weight ratio. Due to the laser powder bed fusion manufacturing process, inhomogeneous cooling affects the microstructure as well as defect distributions. Within this paper, the uniform fatigue damage tolerance assessment was further qualified for (miniature) bending specimens with different loaded volumes based on the concepts according to Murakami (√area) and Shiozawa for an initial defect-based model. These approaches were used to calculate defect-related fatigue life curves, in which the cyclic stress intensity factor (Δ<em>K</em>) at the initiating defect (√area) was used to represent local stress concentration at the crack tip instead of nominal stress-based S-N curves. Results of S-N curves did not allow a precise lifetime prediction due to increasing effect of manufacturing-related defect distributions, while fracture mechanical approaches enable a uniform fatigue lifetime description of different testing volumes. The calculated fatigue limit and short crack threshold value suggested by Noguchi based on the extended approach of Murakami need to be compared and validated experimentally. Furthermore, the effects of miniaturization and crack propagation have been identified and considered. Uniform fatigue life predictions and efficient materials testing have been combined and show potential for future research.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113412"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007871","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Al-Si alloys are commonly used in the automotive and aircraft industry because of their excellent strength-to-weight ratio. Due to the laser powder bed fusion manufacturing process, inhomogeneous cooling affects the microstructure as well as defect distributions. Within this paper, the uniform fatigue damage tolerance assessment was further qualified for (miniature) bending specimens with different loaded volumes based on the concepts according to Murakami (√area) and Shiozawa for an initial defect-based model. These approaches were used to calculate defect-related fatigue life curves, in which the cyclic stress intensity factor (ΔK) at the initiating defect (√area) was used to represent local stress concentration at the crack tip instead of nominal stress-based S-N curves. Results of S-N curves did not allow a precise lifetime prediction due to increasing effect of manufacturing-related defect distributions, while fracture mechanical approaches enable a uniform fatigue lifetime description of different testing volumes. The calculated fatigue limit and short crack threshold value suggested by Noguchi based on the extended approach of Murakami need to be compared and validated experimentally. Furthermore, the effects of miniaturization and crack propagation have been identified and considered. Uniform fatigue life predictions and efficient materials testing have been combined and show potential for future research.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.