Thermal management for transient integrated battery and power electronics systems using phase change materials

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-11-14 DOI:10.1016/j.ijthermalsci.2024.109526
Li Zhang, Huayong Zhao, Changqing Liu
{"title":"Thermal management for transient integrated battery and power electronics systems using phase change materials","authors":"Li Zhang,&nbsp;Huayong Zhao,&nbsp;Changqing Liu","doi":"10.1016/j.ijthermalsci.2024.109526","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating lithium-ion batteries with power electronics enhances compactness, flexibility, and multifunctionality but poses thermal management challenges due to their distinct working temperatures. This paper evaluates the transient thermal characteristics of a battery-phase change materials (PCMs)-converter integrated system at both high (10C) and low (1C) battery discharge rates. A transient three-dimensional thermal model of the system is developed and experimentally validated to assess the performance of the integrated system with transient heat generation. The model goes beyond existing work, which largely focuses on steady heat generation and overheating of battery, by evaluating two key metrics: the system's delay time (<span><math><mrow><msub><mi>τ</mi><mrow><mi>s</mi><mo>−</mo><mi>d</mi></mrow></msub></mrow></math></span>), i.e. the operational duration before overheating of either the battery or the converter, and the maximum temperature difference on the battery surface (<span><math><mrow><mo>Δ</mo><mi>T</mi></mrow></math></span>). Results indicate that increasing the PCMs' horizontal thermal conductivity <span><math><mrow><msub><mi>k</mi><mrow><mi>x</mi><mi>y</mi></mrow></msub></mrow></math></span> (parallel to heating surfaces) consistently benefits the system by extending <span><math><mrow><msub><mi>τ</mi><mrow><mi>s</mi><mo>−</mo><mi>d</mi></mrow></msub></mrow></math></span> and reducing <span><math><mrow><mo>Δ</mo><mi>T</mi></mrow></math></span> at both low and high discharge rates. However, increasing the vertical thermal conductivity <span><math><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></math></span> does not always enhance <span><math><mrow><msub><mi>τ</mi><mrow><mi>s</mi><mo>−</mo><mi>d</mi></mrow></msub></mrow></math></span>. The optimum value of <span><math><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></math></span> depends on the battery discharge rate: with a constant <span><math><mrow><msub><mi>k</mi><mrow><mi>x</mi><mi>y</mi></mrow></msub></mrow></math></span> of 2.5 W m<sup>−1</sup> K<sup>−1</sup>, the optimal <span><math><mrow><msub><mi>τ</mi><mrow><mi>s</mi><mo>−</mo><mi>d</mi></mrow></msub></mrow></math></span> is observed as 2542 s at <span><math><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></math></span> = 0.4 W m<sup>−1</sup> K<sup>−1</sup> at a 1C discharge rate and 273 s at <span><math><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></math></span> = 2.5 W m<sup>−1</sup> K<sup>−1</sup> at a 10C discharge rate. At a 1C discharge rate, <span><math><mrow><msub><mi>τ</mi><mrow><mi>s</mi><mo>−</mo><mi>d</mi></mrow></msub></mrow></math></span> can be consistently prolonged by increasing the PCM thickness. However, at a 10C discharge rate, this enhancement becomes negligible when the PCM thickness exceeds 15 mm. Thicker PCM also improves the temperature uniformity of the battery.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109526"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006483","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating lithium-ion batteries with power electronics enhances compactness, flexibility, and multifunctionality but poses thermal management challenges due to their distinct working temperatures. This paper evaluates the transient thermal characteristics of a battery-phase change materials (PCMs)-converter integrated system at both high (10C) and low (1C) battery discharge rates. A transient three-dimensional thermal model of the system is developed and experimentally validated to assess the performance of the integrated system with transient heat generation. The model goes beyond existing work, which largely focuses on steady heat generation and overheating of battery, by evaluating two key metrics: the system's delay time (τsd), i.e. the operational duration before overheating of either the battery or the converter, and the maximum temperature difference on the battery surface (ΔT). Results indicate that increasing the PCMs' horizontal thermal conductivity kxy (parallel to heating surfaces) consistently benefits the system by extending τsd and reducing ΔT at both low and high discharge rates. However, increasing the vertical thermal conductivity kz does not always enhance τsd. The optimum value of kz depends on the battery discharge rate: with a constant kxy of 2.5 W m−1 K−1, the optimal τsd is observed as 2542 s at kz = 0.4 W m−1 K−1 at a 1C discharge rate and 273 s at kz = 2.5 W m−1 K−1 at a 10C discharge rate. At a 1C discharge rate, τsd can be consistently prolonged by increasing the PCM thickness. However, at a 10C discharge rate, this enhancement becomes negligible when the PCM thickness exceeds 15 mm. Thicker PCM also improves the temperature uniformity of the battery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相变材料实现瞬态集成电池和电力电子系统的热管理
将锂离子电池与电力电子器件集成在一起可提高电池的紧凑性、灵活性和多功能性,但由于其工作温度不同,给热管理带来了挑战。本文评估了电池-相变材料(PCMs)-转换器集成系统在高(10C)和低(1C)电池放电速率下的瞬态热特性。该研究开发了系统的瞬态三维热模型,并通过实验进行了验证,以评估集成系统的瞬态发热性能。该模型评估了两个关键指标:系统延迟时间 (τs-d),即电池或转换器过热前的运行持续时间,以及电池表面最大温差 (ΔT),从而超越了主要关注稳定发热和电池过热的现有工作。结果表明,提高 PCM 的水平热导率 kxy(与加热表面平行)可在低放电率和高放电率情况下延长 τs-d 和降低 ΔT,从而使系统持续受益。然而,增加垂直热导率 kz 并不总能提高 τs-d。kz 的最佳值取决于电池的放电速率:在 kxy 为 2.5 W m-1 K-1 的恒定条件下,当 kz = 0.4 W m-1 K-1 放电速率为 1C 时,最佳 τs-d 为 2542 秒;当 kz = 2.5 W m-1 K-1 放电速率为 10C 时,最佳 τs-d 为 273 秒。在 1C 放电速率下,通过增加 PCM 厚度可以持续延长 τs-d 的时间。然而,在 10C 放电速率下,当 PCM 厚度超过 15 毫米时,τs-d 的延长就变得微不足道了。加厚 PCM 还能改善电池的温度均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Optimal arrangements of inlet and outlet in topology liquid-cooled microchannel heat sink based on Multi-Objective optimization A data-driven intelligent learning algorithm for simultaneous prediction of aerodynamic heat and thermo-physical property parameters Numerical and experimental investigation of optimized heat sink designs for liquid cooling of a heterogeneous heating surface with multiple heat sources Effect of loaded carbon-based nanoparticles on the evaporation dynamics of sessile droplets Experimental and numerical investigations of local flow and heat transfer characteristics of partially finned flat-oval tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1