Fabrication of tannic acid-(3-amino)propyltriethoxysilane with zwitterionic carbon quantum dots coating on cellulose acetate tubular membrane for oil-water emulsion separation
John Paul D. Arcilla , Hong-Li Yang , Hsin-Yi Lin , Pei-Chen Chen , Rhoda B. Leron , Hui-An Tsai , Kueir-Rarn Lee
{"title":"Fabrication of tannic acid-(3-amino)propyltriethoxysilane with zwitterionic carbon quantum dots coating on cellulose acetate tubular membrane for oil-water emulsion separation","authors":"John Paul D. Arcilla , Hong-Li Yang , Hsin-Yi Lin , Pei-Chen Chen , Rhoda B. Leron , Hui-An Tsai , Kueir-Rarn Lee","doi":"10.1016/j.jtice.2024.105821","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The discharge of large volumes of oily wastewater from industries has been a serious global concern. In recent years, membrane filtration has been considered an effective method for treating oily wastewater. However, membrane fouling is a major challenge inherent to this approach.</div></div><div><h3>Methods</h3><div>This study integrated zwitterionic carbon quantum dots (ZQDs) into a tannic acid-(3-aminopropyl)triethoxysilane (TA-APTES) coating on cellulose acetate (CA) tubular membranes to explore the potential for improve the hydrophilicity and anti-fouling properties of the membrane. The CA tubular membrane was fabricated by dry/wet spinning method. A green and one-step synthesis of TA-APTES with ZQDs was utilized to modify the surface of the CA pristine membrane.</div></div><div><h3>Significant findings</h3><div>Incorporating ZQDs enhanced the membrane's hydrophilicity. Results showed that the modified membrane with ZQDs (CA/T<sub>0.4</sub>A+ZQDs) displayed super hydrophilicity with a water contact angle of 12.53 ± 0.9°, pure water permeance of 987.13 ± 57.9 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>, diesel-water emulsion permeance of 577.10 ± 64.7 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>, and enhanced oleophobicity with oil rejection rate of > 99 %. Furthermore, the CA/T0.4A+ZQDs membrane showed the best anti-fouling property, with the highest flux recovery ratio (FRR), lowest irreversible fouling ratio (R<sub>ir,1</sub>) of 94.98 % and 5.05 %, respectively and mechanical stability after 5 cycles of oil-water separation.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105821"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004796","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The discharge of large volumes of oily wastewater from industries has been a serious global concern. In recent years, membrane filtration has been considered an effective method for treating oily wastewater. However, membrane fouling is a major challenge inherent to this approach.
Methods
This study integrated zwitterionic carbon quantum dots (ZQDs) into a tannic acid-(3-aminopropyl)triethoxysilane (TA-APTES) coating on cellulose acetate (CA) tubular membranes to explore the potential for improve the hydrophilicity and anti-fouling properties of the membrane. The CA tubular membrane was fabricated by dry/wet spinning method. A green and one-step synthesis of TA-APTES with ZQDs was utilized to modify the surface of the CA pristine membrane.
Significant findings
Incorporating ZQDs enhanced the membrane's hydrophilicity. Results showed that the modified membrane with ZQDs (CA/T0.4A+ZQDs) displayed super hydrophilicity with a water contact angle of 12.53 ± 0.9°, pure water permeance of 987.13 ± 57.9 L m-2 h-1 bar-1, diesel-water emulsion permeance of 577.10 ± 64.7 L m-2 h-1 bar-1, and enhanced oleophobicity with oil rejection rate of > 99 %. Furthermore, the CA/T0.4A+ZQDs membrane showed the best anti-fouling property, with the highest flux recovery ratio (FRR), lowest irreversible fouling ratio (Rir,1) of 94.98 % and 5.05 %, respectively and mechanical stability after 5 cycles of oil-water separation.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.