Video foreground and background separation via Gaussian scale mixture and generalized nuclear norm based robust principal component analysis

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-11-12 DOI:10.1016/j.dsp.2024.104863
Yongpeng Yang , Zhenzhen Yang , Jianlin Li
{"title":"Video foreground and background separation via Gaussian scale mixture and generalized nuclear norm based robust principal component analysis","authors":"Yongpeng Yang ,&nbsp;Zhenzhen Yang ,&nbsp;Jianlin Li","doi":"10.1016/j.dsp.2024.104863","DOIUrl":null,"url":null,"abstract":"<div><div>Since one decade, robust principal component analysis (RPCA) has been the most representative problem formulation for video foreground and background separation via decomposing an observed matrix into sparse and low-rank matrices. However, existing RPCA methods still have several major limitations for video foreground and background separation including neglecting impact of noise, low approximation degree for sparse and low-rank function, neglecting spatial-temporal relation of pixels and regularization parameter selection. All these limitations reduce their performance for video foreground and background separation. Consequently, in order to solve the problems of neglecting impact of noise and low approximation accuracy, we first design a novel RPCA method based on Gaussian scale mixture and generalized nuclear norm (GSMGNN), which integrates the Gaussian scale mixture (GSM) and generalized nuclear norm (GNN). Specifically, the GSM can better describe each pixel of foreground in videos via decomposing the foreground to a standardized Gaussian random variable and a positive hidden multiplier. Meanwhile, the GNN can better approximate to the low-rank background. In addition, we extend the GSMGNN method to the robust Gaussian scale mixture and generalized nuclear norm (RGSMGNN) method against noise via inducing the noise item. And the efficient ADMM method is adopted to solve these two proposed methods via breaking them into easier handling smaller pieces. At last, experiments on challenging datasets demonstrate the better effectiveness than many other state-of-the-art methods.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104863"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004871","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Since one decade, robust principal component analysis (RPCA) has been the most representative problem formulation for video foreground and background separation via decomposing an observed matrix into sparse and low-rank matrices. However, existing RPCA methods still have several major limitations for video foreground and background separation including neglecting impact of noise, low approximation degree for sparse and low-rank function, neglecting spatial-temporal relation of pixels and regularization parameter selection. All these limitations reduce their performance for video foreground and background separation. Consequently, in order to solve the problems of neglecting impact of noise and low approximation accuracy, we first design a novel RPCA method based on Gaussian scale mixture and generalized nuclear norm (GSMGNN), which integrates the Gaussian scale mixture (GSM) and generalized nuclear norm (GNN). Specifically, the GSM can better describe each pixel of foreground in videos via decomposing the foreground to a standardized Gaussian random variable and a positive hidden multiplier. Meanwhile, the GNN can better approximate to the low-rank background. In addition, we extend the GSMGNN method to the robust Gaussian scale mixture and generalized nuclear norm (RGSMGNN) method against noise via inducing the noise item. And the efficient ADMM method is adopted to solve these two proposed methods via breaking them into easier handling smaller pieces. At last, experiments on challenging datasets demonstrate the better effectiveness than many other state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于高斯尺度混合物和广义核规范的鲁棒主成分分析进行视频前景和背景分离
近十年来,鲁棒主成分分析法(RPCA)通过将观测矩阵分解为稀疏低秩矩阵,成为视频前景与背景分离的最具代表性的问题表述方法。然而,现有的 RPCA 方法在视频前景和背景分离方面仍存在一些主要局限性,包括忽略噪声的影响、稀疏和低秩函数的近似度低、忽略像素的时空关系以及正则化参数选择等。所有这些局限性都降低了它们在视频前景和背景分离方面的性能。因此,为了解决忽略噪声影响和近似精度低的问题,我们首先设计了一种基于高斯尺度混合物和广义核规范(GSMGNN)的新型 RPCA 方法,该方法综合了高斯尺度混合物(GSM)和广义核规范(GNN)。具体来说,GSM 通过将前景分解为标准化高斯随机变量和正隐藏乘数,可以更好地描述视频中的每个前景像素。同时,GNN 可以更好地逼近低等级背景。此外,我们还通过诱导噪声项,将 GSMGNN 方法扩展为抗噪声的鲁棒高斯尺度混合和广义核规范(RGSMGNN)方法。此外,我们还采用了高效的 ADMM 方法,通过将这两种方法分解成更易于处理的小块来求解。最后,在具有挑战性的数据集上进行的实验证明,与许多其他最先进的方法相比,这两种方法具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8 Efficient recurrent real video restoration IGGCN: Individual-guided graph convolution network for pedestrian trajectory prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1