Enhancing turbulent heat transfer and flow characteristics in ribbed channels with periodic slits: A comparative study of transverse, inclined, and V-shaped configurations
Dehai Kong , Shuo Ren , Sergey Isaev , Cunliang Liu , Song Liu , Xiying Niu
{"title":"Enhancing turbulent heat transfer and flow characteristics in ribbed channels with periodic slits: A comparative study of transverse, inclined, and V-shaped configurations","authors":"Dehai Kong , Shuo Ren , Sergey Isaev , Cunliang Liu , Song Liu , Xiying Niu","doi":"10.1016/j.ijthermalsci.2024.109531","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we experimentally investigate the turbulent heat transfer characteristics of rectangular channels equipped with miniature transverse, inclined, and V-shaped ribs, each incorporating various types of periodical slits. These slits, located between the lower wall of the rib and the bottom wall of the channel, create different slit channels (confusor, diffusor, and constant cross-section). The rib blockage ratio and the pitch to rib height ratio were kept at 0.032 and 10, respectively. To measure the local heat transfer characteristics on the bottom ribbed wall at Reynolds numbers varying from 40,000 to 120,000, the transient thermochromic liquid crystal (TLC) method was employed. In addition, the <em>k-ω</em> SST turbulence model was used to simulate the spatial turbulent flow behaviours in rectangular channels with slit ribs to reveal the heat transfer mechanism. The results indicate that the configuration of miniature ribs, along with the type and position of slits, significantly affects the heat transfer and friction loss of the rectangular channel. Opening periodical slits on the ribs reduces the pressure drop of the ribbed channel while exerting various influences on heat transfer performance due to complex vortex structures induced by the ribs and slits, which affect the secondary flow intensity. The highest average augmentation Nusselt number and thermal-hydraulic performance (THP) were observed in channels with V-shaped solid ribs, achieving values up to 2.5 and 1.7 at Re = 40,000. Lastly, we established experimental correlations for the overall averaged Nusselt number and friction characteristics specific to the slit ribbed channels.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109531"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006537","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we experimentally investigate the turbulent heat transfer characteristics of rectangular channels equipped with miniature transverse, inclined, and V-shaped ribs, each incorporating various types of periodical slits. These slits, located between the lower wall of the rib and the bottom wall of the channel, create different slit channels (confusor, diffusor, and constant cross-section). The rib blockage ratio and the pitch to rib height ratio were kept at 0.032 and 10, respectively. To measure the local heat transfer characteristics on the bottom ribbed wall at Reynolds numbers varying from 40,000 to 120,000, the transient thermochromic liquid crystal (TLC) method was employed. In addition, the k-ω SST turbulence model was used to simulate the spatial turbulent flow behaviours in rectangular channels with slit ribs to reveal the heat transfer mechanism. The results indicate that the configuration of miniature ribs, along with the type and position of slits, significantly affects the heat transfer and friction loss of the rectangular channel. Opening periodical slits on the ribs reduces the pressure drop of the ribbed channel while exerting various influences on heat transfer performance due to complex vortex structures induced by the ribs and slits, which affect the secondary flow intensity. The highest average augmentation Nusselt number and thermal-hydraulic performance (THP) were observed in channels with V-shaped solid ribs, achieving values up to 2.5 and 1.7 at Re = 40,000. Lastly, we established experimental correlations for the overall averaged Nusselt number and friction characteristics specific to the slit ribbed channels.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.