Design of MnO2/g-C3N4 heterojunction composite photocatalysts for augmented charge separation and photocatalytic degradation performance with superior antibacterial activity
{"title":"Design of MnO2/g-C3N4 heterojunction composite photocatalysts for augmented charge separation and photocatalytic degradation performance with superior antibacterial activity","authors":"Shanmugam Vignesh , Renji Rajendran , P. Sivaprakash , Govindasami Periyasami , Ikhyun Kim , Kumar Manimaran , Sanjeevamuthu Suganthi , Tae Hwan Oh","doi":"10.1016/j.molliq.2024.126470","DOIUrl":null,"url":null,"abstract":"<div><div>The development of advanced photocatalysts is critical for addressing environmental pollution and enhancing water purification processes. Our study has effectively developed a novel MnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (MGC) heterojunction composite photocatalyst exhibiting superior photo-degradation under visible-light (VL) conditions and also established antibacterial activities. Comprehensive characterization was acquired using XRD, FT-IR, FE-SEM with EDX-associated mapping images, TEM, UV–Vis DRS and PL investigations, indicating the successful formation of well-dispersed MnO<sub>2</sub> nanoparticles (NPs) over the g-C<sub>3</sub>N<sub>4</sub> catalyst. The MGC composite heterojunction photocatalyst demonstrated increased photocatalytic degradation activity of 77.2 % in aqueous crystal violet (CV) under VL within 120 min, significantly outperforming pure g-C<sub>3</sub>N<sub>4</sub> and MnO<sub>2</sub> by 3.02 and 2.37 times, respectively. The MGC composite demonstrates remarkable stability and reusability, retaining 73.7 % of its efficiency after five consecutive cycles. Additionally, the as-synthesised composite endows potent antibacterial action against various pathogenic bacteria including <em>K. pneumonia, S. aureus, E. coli and B. cereus</em>. The active species analysis indicates that the composite photocatalyst facilitates charge transfer, while effectively preventing the recombination of photo-produced carriers via an effective Z-scheme mechanism, and the synergistic things among MnO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> are accredited to the boosted photocatalytic and antibacterial activities. This research describes a photocatalytic approach for efficiently eliminating various contaminants from water bodies, which has significant implications for the future development of photocatalytic technology for wastewater handling.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"416 ","pages":"Article 126470"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224025297","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of advanced photocatalysts is critical for addressing environmental pollution and enhancing water purification processes. Our study has effectively developed a novel MnO2/g-C3N4 (MGC) heterojunction composite photocatalyst exhibiting superior photo-degradation under visible-light (VL) conditions and also established antibacterial activities. Comprehensive characterization was acquired using XRD, FT-IR, FE-SEM with EDX-associated mapping images, TEM, UV–Vis DRS and PL investigations, indicating the successful formation of well-dispersed MnO2 nanoparticles (NPs) over the g-C3N4 catalyst. The MGC composite heterojunction photocatalyst demonstrated increased photocatalytic degradation activity of 77.2 % in aqueous crystal violet (CV) under VL within 120 min, significantly outperforming pure g-C3N4 and MnO2 by 3.02 and 2.37 times, respectively. The MGC composite demonstrates remarkable stability and reusability, retaining 73.7 % of its efficiency after five consecutive cycles. Additionally, the as-synthesised composite endows potent antibacterial action against various pathogenic bacteria including K. pneumonia, S. aureus, E. coli and B. cereus. The active species analysis indicates that the composite photocatalyst facilitates charge transfer, while effectively preventing the recombination of photo-produced carriers via an effective Z-scheme mechanism, and the synergistic things among MnO2 and g-C3N4 are accredited to the boosted photocatalytic and antibacterial activities. This research describes a photocatalytic approach for efficiently eliminating various contaminants from water bodies, which has significant implications for the future development of photocatalytic technology for wastewater handling.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.