On-the-fly spectral unmixing based on Kalman filtering

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-10-30 DOI:10.1016/j.chemolab.2024.105252
Hugues Kouakou , José Henrique de Morais Goulart , Raffaele Vitale , Thomas Oberlin , David Rousseau , Cyril Ruckebusch , Nicolas Dobigeon
{"title":"On-the-fly spectral unmixing based on Kalman filtering","authors":"Hugues Kouakou ,&nbsp;José Henrique de Morais Goulart ,&nbsp;Raffaele Vitale ,&nbsp;Thomas Oberlin ,&nbsp;David Rousseau ,&nbsp;Cyril Ruckebusch ,&nbsp;Nicolas Dobigeon","doi":"10.1016/j.chemolab.2024.105252","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces an on-the-fly (i.e., online) linear spectral unmixing method which is able to sequentially analyze spectral data acquired on a spectrum-by-spectrum basis. After deriving a sequential counterpart of the conventional linear mixing model, the proposed approach recasts the linear unmixing problem into a linear state-space estimation framework. Under Gaussian noise and state models, the estimation of the pure spectra can be efficiently conducted by resorting to Kalman filtering. Interestingly, it is shown that this Kalman filter can operate in a lower-dimensional subspace to lighten the computational burden of the overall unmixing procedure. Experimental results obtained on synthetic and real Raman data sets show that this Kalman filter-based method offers a convenient trade-off between unmixing accuracy and computational efficiency, which is crucial for operating in an on-the-fly setting. The proposed method constitutes a valuable building block for benefiting from acquisition and processing frameworks recently proposed in the microscopy literature, which are motivated by practical issues such as reducing acquisition time and avoiding potential damages being inflicted to photosensitive samples. The code associated with the numerical illustrations reported in this paper is freely available online at <span><span>https://github.com/HKouakou/KF-OSU</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"255 ","pages":"Article 105252"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001928","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces an on-the-fly (i.e., online) linear spectral unmixing method which is able to sequentially analyze spectral data acquired on a spectrum-by-spectrum basis. After deriving a sequential counterpart of the conventional linear mixing model, the proposed approach recasts the linear unmixing problem into a linear state-space estimation framework. Under Gaussian noise and state models, the estimation of the pure spectra can be efficiently conducted by resorting to Kalman filtering. Interestingly, it is shown that this Kalman filter can operate in a lower-dimensional subspace to lighten the computational burden of the overall unmixing procedure. Experimental results obtained on synthetic and real Raman data sets show that this Kalman filter-based method offers a convenient trade-off between unmixing accuracy and computational efficiency, which is crucial for operating in an on-the-fly setting. The proposed method constitutes a valuable building block for benefiting from acquisition and processing frameworks recently proposed in the microscopy literature, which are motivated by practical issues such as reducing acquisition time and avoiding potential damages being inflicted to photosensitive samples. The code associated with the numerical illustrations reported in this paper is freely available online at https://github.com/HKouakou/KF-OSU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼滤波技术的即时光谱非混频技术
这项工作介绍了一种即时(即在线)线性光谱解混合方法,该方法能够按频谱逐一顺序分析获取的光谱数据。在推导出传统线性混频模型的顺序对应模型后,所提出的方法将线性解混问题重铸为线性状态空间估计框架。在高斯噪声和状态模型下,通过卡尔曼滤波可以有效地估计纯光谱。有趣的是,卡尔曼滤波可以在低维子空间中运行,从而减轻整个解混频过程的计算负担。在合成和真实拉曼数据集上获得的实验结果表明,这种基于卡尔曼滤波器的方法可以在解混合精度和计算效率之间进行方便的权衡,而计算效率对于在实时环境中运行至关重要。所提出的方法是一个有价值的构件,可从最近在显微镜文献中提出的采集和处理框架中获益,这些框架的动机是减少采集时间和避免对光敏样品造成潜在损害等实际问题。本文报告的数值图解相关代码可在 https://github.com/HKouakou/KF-OSU 免费在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1