Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-17 DOI:10.1016/j.jpowsour.2024.235799
Ying Chen , Suxia Yan , Taofeng Li , Zhilong Zhang , Li Zhang , Xiaohui Song , Junfeng Liu , Yong Wang , Edison Huixiang Ang
{"title":"Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes","authors":"Ying Chen ,&nbsp;Suxia Yan ,&nbsp;Taofeng Li ,&nbsp;Zhilong Zhang ,&nbsp;Li Zhang ,&nbsp;Xiaohui Song ,&nbsp;Junfeng Liu ,&nbsp;Yong Wang ,&nbsp;Edison Huixiang Ang","doi":"10.1016/j.jpowsour.2024.235799","DOIUrl":null,"url":null,"abstract":"<div><div>The zinc (Zn) anode of aqueous zinc-ion batteries (AZIBs) faces significant challenges, including dendritic growth, hydrogen evolution reactions, and corrosion, which impede their commercial application. Here, we present a strategy for creating an artificial surface coating layer, Zn-polyethylenimine (Zn-PEI) coordination polymer, formed on the Zn anode surface. The robust Zn-PEI protective layer, rich in amine groups, accelerates ion transport and provides a uniform electric field, thereby suppressing dendrite formation. Additionally, this layer prevents direct contact between the Zn surface and the electrolyte, reducing other side reactions such as hydrogen evolution, surface corrosion, and passivation. The charged amine groups in PEI preferentially expose the Zn (101) crystal plane, which has weak thermodynamic stability, to achieve ordered and densely packed Zn (101) deposition. Consequently, Zn-PEI@Zn//Zn-PEI@Zn symmetric cells exhibit a remarkable cycling life of over 2000 h under the conditions of 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, and Zn-PEI@Zn//Cu asymmetric cells maintain an average coulombic efficiency of 99.7 % after 1000 stable cycles. This strategy effectively addresses the inherent issues of dendrite growth and hydrogen evolution in Zn anodes, laying a solid foundation for the development of high-performance AZIBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"627 ","pages":"Article 235799"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017518","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The zinc (Zn) anode of aqueous zinc-ion batteries (AZIBs) faces significant challenges, including dendritic growth, hydrogen evolution reactions, and corrosion, which impede their commercial application. Here, we present a strategy for creating an artificial surface coating layer, Zn-polyethylenimine (Zn-PEI) coordination polymer, formed on the Zn anode surface. The robust Zn-PEI protective layer, rich in amine groups, accelerates ion transport and provides a uniform electric field, thereby suppressing dendrite formation. Additionally, this layer prevents direct contact between the Zn surface and the electrolyte, reducing other side reactions such as hydrogen evolution, surface corrosion, and passivation. The charged amine groups in PEI preferentially expose the Zn (101) crystal plane, which has weak thermodynamic stability, to achieve ordered and densely packed Zn (101) deposition. Consequently, Zn-PEI@Zn//Zn-PEI@Zn symmetric cells exhibit a remarkable cycling life of over 2000 h under the conditions of 1 mA cm−2 and 1 mAh cm−2, and Zn-PEI@Zn//Cu asymmetric cells maintain an average coulombic efficiency of 99.7 % after 1000 stable cycles. This strategy effectively addresses the inherent issues of dendrite growth and hydrogen evolution in Zn anodes, laying a solid foundation for the development of high-performance AZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自组装锌聚乙烯亚胺防护罩,实现长效锌阳极
水性锌离子电池(AZIBs)的锌(Zn)阳极面临着树枝状生长、氢演化反应和腐蚀等重大挑战,阻碍了其商业应用。在此,我们提出了一种在锌阳极表面形成人工表面涂层层--锌-聚乙烯亚胺(Zn-PEI)配位聚合物的策略。富含胺基团的坚固 Zn-PEI 保护层可加速离子传输并提供均匀的电场,从而抑制枝晶的形成。此外,该保护层还能防止锌表面与电解液直接接触,从而减少氢演化、表面腐蚀和钝化等其他副反应。PEI 中带电的胺基团会优先暴露热力学稳定性较弱的 Zn (101) 晶面,从而实现有序、密集的 Zn (101) 沉积。因此,Zn-PEI@Zn//Zn-PEI@Zn 对称电池在 1 mA cm-2 和 1 mAh cm-2 的条件下显示出超过 2000 小时的出色循环寿命,而 Zn-PEI@Zn//Cu 不对称电池在 1000 次稳定循环后仍能保持 99.7% 的平均库仑效率。这种策略有效地解决了锌阳极树枝状生长和氢演化的固有问题,为开发高性能 AZIB 奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
In-situ generated sulfur/porous carbon nanocomposites featuring enhanced specific surface area for aqueous zinc-sulfur batteries with small electrochemical polarization Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes Polyimide dielectrics sandwiched by large-bandgap Al2O3 for high-temperature energy storage Enhancing sodium ion transport in batteries through a crosslinked ceramic network-coated polyethylene (PE) separator Multi-objective optimized energy management strategy using an artificial tree algorithm for extended range hybrid loaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1