A parameter identification method of lithium ion battery electrochemical model based on combination of classifier and heuristic algorithm

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-07 DOI:10.1016/j.est.2024.114497
Yaxuan Wang , Junfu Li , Shilong Guo , Meiyan Sun , Liang Deng , Lei Zhao , Zhenbo Wang
{"title":"A parameter identification method of lithium ion battery electrochemical model based on combination of classifier and heuristic algorithm","authors":"Yaxuan Wang ,&nbsp;Junfu Li ,&nbsp;Shilong Guo ,&nbsp;Meiyan Sun ,&nbsp;Liang Deng ,&nbsp;Lei Zhao ,&nbsp;Zhenbo Wang","doi":"10.1016/j.est.2024.114497","DOIUrl":null,"url":null,"abstract":"<div><div>Parameters of lithium-ion electrochemical battery model have a great impact on the simulation accuracy, so their accurate identification plays an important role in terms of battery characteristic simulation and health management. Currently, global optimization algorithm is a common method for lithium-ion battery parameter identification, however this kind of method may lead to local optimization, which fails to get accurate identification results. In the search range of the global optimization algorithm, there are certain parameter vectors that may cause the battery model to not converge. Such parameters reduce the computing efficiency seriously. This work proposes a new parameter identification method for lithium-ion battery electrochemical model, which combines machine learning based classifier with improved particle swarm optimization algorithm. The classifier is used to filter the parameter vectors in the swarm generated by improved particle swarm optimization algorithm that may make the battery model fail to converge. The classification accuracy is up to over 90 %. Validation results indicate that the battery model with identified parameters obtained by the developed method has acceptable simulation accuracy, and the terminal voltage simulation errors are within 24.6 mV. Also, the parameter identification method can significantly improve the efficiency of parameter identification.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114497"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040830","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Parameters of lithium-ion electrochemical battery model have a great impact on the simulation accuracy, so their accurate identification plays an important role in terms of battery characteristic simulation and health management. Currently, global optimization algorithm is a common method for lithium-ion battery parameter identification, however this kind of method may lead to local optimization, which fails to get accurate identification results. In the search range of the global optimization algorithm, there are certain parameter vectors that may cause the battery model to not converge. Such parameters reduce the computing efficiency seriously. This work proposes a new parameter identification method for lithium-ion battery electrochemical model, which combines machine learning based classifier with improved particle swarm optimization algorithm. The classifier is used to filter the parameter vectors in the swarm generated by improved particle swarm optimization algorithm that may make the battery model fail to converge. The classification accuracy is up to over 90 %. Validation results indicate that the battery model with identified parameters obtained by the developed method has acceptable simulation accuracy, and the terminal voltage simulation errors are within 24.6 mV. Also, the parameter identification method can significantly improve the efficiency of parameter identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分类器和启发式算法相结合的锂离子电池电化学模型参数识别方法
锂离子电化学电池模型参数对仿真精度有很大影响,因此参数的准确识别对电池特性仿真和健康管理具有重要作用。目前,全局优化算法是锂离子电池参数识别的常用方法,但这种方法可能会导致局部优化,无法得到准确的识别结果。在全局优化算法的搜索范围内,有一些参数向量可能会导致电池模型无法收敛。这些参数严重降低了计算效率。本研究提出了一种新的锂离子电池电化学模型参数识别方法,该方法结合了基于机器学习的分类器和改进的粒子群优化算法。分类器用于过滤改进粒子群优化算法产生的粒子群中可能导致电池模型无法收敛的参数向量。分类准确率高达 90% 以上。验证结果表明,用所开发的方法获得的带识别参数的电池模型具有可接受的仿真精度,端电压仿真误差在 24.6 mV 以内。参数识别方法还能显著提高参数识别的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Editorial Board Synthesis and fabrication of tetragonal copper chromite nanospheres for usage as the cathode material in asymmetric supercapacitors Restricted growth of polyaniline nanofiber arrays between holey graphene sheets on carbon cloth towards improved charge storage capacity Modified poly(vinylidene fluoride) polymer binder enables ultrathin sulfide solid electrolyte membrane for all-solid-state batteries In-situ micro-battery etching induced 3D Zn with amorphous interfacial coating for high-stable Zn metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1