Chunyang Song , Feilong Zhang , Yafei Qiao , Shuang Tian , Zhilong He , Jie Gao , Yonggao Xia
{"title":"Carbon black SP is a carbon material more suitable for SiOx than graphite","authors":"Chunyang Song , Feilong Zhang , Yafei Qiao , Shuang Tian , Zhilong He , Jie Gao , Yonggao Xia","doi":"10.1016/j.jpowsour.2024.235779","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the cycle stability of the SiOx anode in high-energy-density lithium-ion batteries from the perspective of electrode formulation, this paper investigates why SP is more suitable for SiOx than Gr, as well as the influence of SP content on the performance of the SiOx anode. The findings reveal that, compared to Gr, SP exhibits superior ionic conductivity. Moreover, the carbon binder domains (CBD) network formed by SP and the binder demonstrates a more effective buffering capacity against the volume expansion of SiOx than that of Gr. Additionally, SP is observed to elevate the lithium intercalation potential of SiOx, thereby endowing SiOx with a higher specific capacity. Nonetheless, the use of SP also introduces several challenges. On one hand, it can induce uneven lithium deposition on the composite electrode, leading to electrode cracking. On the other hand, the very low initial coulombic efficiency (ICE) of SP results in an irreversible loss of lithium ions on the cathode electrode side in a full cell configuration. Consequently, when designing a full cell, it is imperative to consider the inherent characteristics of SP, and optimization can be achieved by adjusting the negative/positive capacity ratio (N/P) or employing prelithiation methods.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"627 ","pages":"Article 235779"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017312","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the cycle stability of the SiOx anode in high-energy-density lithium-ion batteries from the perspective of electrode formulation, this paper investigates why SP is more suitable for SiOx than Gr, as well as the influence of SP content on the performance of the SiOx anode. The findings reveal that, compared to Gr, SP exhibits superior ionic conductivity. Moreover, the carbon binder domains (CBD) network formed by SP and the binder demonstrates a more effective buffering capacity against the volume expansion of SiOx than that of Gr. Additionally, SP is observed to elevate the lithium intercalation potential of SiOx, thereby endowing SiOx with a higher specific capacity. Nonetheless, the use of SP also introduces several challenges. On one hand, it can induce uneven lithium deposition on the composite electrode, leading to electrode cracking. On the other hand, the very low initial coulombic efficiency (ICE) of SP results in an irreversible loss of lithium ions on the cathode electrode side in a full cell configuration. Consequently, when designing a full cell, it is imperative to consider the inherent characteristics of SP, and optimization can be achieved by adjusting the negative/positive capacity ratio (N/P) or employing prelithiation methods.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems