Green and chemical synthesis of TiO2 nanoparticles: An In-depth comparative analysis and photoluminescence study

IF 5.45 Q1 Physics and Astronomy Nano-Structures & Nano-Objects Pub Date : 2024-11-12 DOI:10.1016/j.nanoso.2024.101408
A. Sangeetha , Adithi Ambli , B.M. Nagabhushana
{"title":"Green and chemical synthesis of TiO2 nanoparticles: An In-depth comparative analysis and photoluminescence study","authors":"A. Sangeetha ,&nbsp;Adithi Ambli ,&nbsp;B.M. Nagabhushana","doi":"10.1016/j.nanoso.2024.101408","DOIUrl":null,"url":null,"abstract":"<div><div>Titania nanoparticles were synthesized by sol-gel method using chemical and natural solvents. Isopropanol is used as a chemical solvent for the reduction of ions. Further, Jasminum and Magnolia champaca flower extracts were individually used as natural solvents which acts as both reducing and stabilizing agents. The role of natural solvents over chemical solvents on the structure, phase, morphology, and optical properties of TiO<sub>2</sub> nanoparticles were investigated. Synthesis using natural solvents led to rutile phase of TiO<sub>2</sub> nanoparticles while, chemical synthesis produced anatase phase. Green synthesis yielded larger crystallite size TiO<sub>2</sub> compared to chemical synthesis. Synthesized TiO<sub>2</sub> exhibited PL emission centered at 397 nm with excitation 325 nm associated with weak emissions noticed at 450 nm, 470 nm, and 520 nm.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101408"},"PeriodicalIF":5.4500,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Titania nanoparticles were synthesized by sol-gel method using chemical and natural solvents. Isopropanol is used as a chemical solvent for the reduction of ions. Further, Jasminum and Magnolia champaca flower extracts were individually used as natural solvents which acts as both reducing and stabilizing agents. The role of natural solvents over chemical solvents on the structure, phase, morphology, and optical properties of TiO2 nanoparticles were investigated. Synthesis using natural solvents led to rutile phase of TiO2 nanoparticles while, chemical synthesis produced anatase phase. Green synthesis yielded larger crystallite size TiO2 compared to chemical synthesis. Synthesized TiO2 exhibited PL emission centered at 397 nm with excitation 325 nm associated with weak emissions noticed at 450 nm, 470 nm, and 520 nm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiO2 纳米粒子的绿色化学合成:深入对比分析和光致发光研究
使用化学溶剂和天然溶剂通过溶胶-凝胶法合成了二氧化钛纳米粒子。异丙醇被用作还原离子的化学溶剂。此外,茉莉花和厚朴花提取物被单独用作天然溶剂,它们既是还原剂又是稳定剂。研究了天然溶剂相对于化学溶剂对二氧化钛纳米粒子的结构、相、形态和光学特性的影响。使用天然溶剂合成的二氧化钛纳米粒子具有金红石相,而化学合成则具有锐钛矿相。与化学合成相比,绿色合成产生的二氧化钛晶体尺寸更大。合成的二氧化钛在 325 纳米波长的激发下显示出以 397 纳米波长为中心的 PL 发射,在 450 纳米波长、470 纳米波长和 520 纳米波长处有微弱的发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
期刊最新文献
A comprehensive scrutinization on tamarind kernel powder-based derivatives and nanomaterials in modern research Green and chemical synthesis of TiO2 nanoparticles: An In-depth comparative analysis and photoluminescence study Green synthesis of nitrogen-doped TiO2 nanoparticles with exposed {001} facets using Chromolaena odorata leaf extract for photodegradation of pollutants under visible light Development and characterization of solriamfetol-loaded PVA/PLGA electrospun nanofiber membranes: A promising approach for sustained narcolepsy treatment Enhanced delivery of rivastigmine for Alzheimer's disease: Convolvulus pluricaulis lipid hybrid nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1