{"title":"Green and chemical synthesis of TiO2 nanoparticles: An In-depth comparative analysis and photoluminescence study","authors":"A. Sangeetha , Adithi Ambli , B.M. Nagabhushana","doi":"10.1016/j.nanoso.2024.101408","DOIUrl":null,"url":null,"abstract":"<div><div>Titania nanoparticles were synthesized by sol-gel method using chemical and natural solvents. Isopropanol is used as a chemical solvent for the reduction of ions. Further, Jasminum and Magnolia champaca flower extracts were individually used as natural solvents which acts as both reducing and stabilizing agents. The role of natural solvents over chemical solvents on the structure, phase, morphology, and optical properties of TiO<sub>2</sub> nanoparticles were investigated. Synthesis using natural solvents led to rutile phase of TiO<sub>2</sub> nanoparticles while, chemical synthesis produced anatase phase. Green synthesis yielded larger crystallite size TiO<sub>2</sub> compared to chemical synthesis. Synthesized TiO<sub>2</sub> exhibited PL emission centered at 397 nm with excitation 325 nm associated with weak emissions noticed at 450 nm, 470 nm, and 520 nm.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101408"},"PeriodicalIF":5.4500,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Titania nanoparticles were synthesized by sol-gel method using chemical and natural solvents. Isopropanol is used as a chemical solvent for the reduction of ions. Further, Jasminum and Magnolia champaca flower extracts were individually used as natural solvents which acts as both reducing and stabilizing agents. The role of natural solvents over chemical solvents on the structure, phase, morphology, and optical properties of TiO2 nanoparticles were investigated. Synthesis using natural solvents led to rutile phase of TiO2 nanoparticles while, chemical synthesis produced anatase phase. Green synthesis yielded larger crystallite size TiO2 compared to chemical synthesis. Synthesized TiO2 exhibited PL emission centered at 397 nm with excitation 325 nm associated with weak emissions noticed at 450 nm, 470 nm, and 520 nm.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .