{"title":"Study of electric transport and impedance analysis in copper chloride modified bismuth boro-tellurite glasses","authors":"Komal Poria , Sunil Dhankhar , Rajesh Parmar , R.S. Kundu","doi":"10.1016/j.jnoncrysol.2024.123301","DOIUrl":null,"url":null,"abstract":"<div><div>CuCl<sub>2</sub> substituted bismuth borate tellurite glasses were examined for electrical conductivity at frequencies between 10<sup>−1</sup> Hz and 10<sup>6</sup> Hz and temperatures between 463 K and 563K. The Almond West law used for fitting experimental data of ac conductivity, and determining cross-over frequency (ω<sub>H</sub>), frequency exponent (s), and dc conductivity (σ<sub>dc</sub>). Depending on the glass composition, ac conduction process was modeled using correlated barrier hopping and non-overlapping small polaron tunneling. The imaginary component of the electric modulus included in the experimental data fitted by non-exponential Kohlrausch-Williams-Watts. Impedance examination reveals minimization of mixed former effect on electric charge transport at low frequencies in studies glasses. For <em>x</em> = 20, conduction occurs due to charge carriers (Cu<sup>2+</sup> ions/polarons). An excellent match is found between the Nyquist plots and equivalent circuit models. There is good agreement between the estimated activation energy from conductivity E<sub>C</sub> (0.82–1.13 eV), electric modulus E<sub>R</sub> (0.81–1.12 eV), and impedance E<sub>Z</sub> (0.82–1.15 eV) analyses.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"648 ","pages":"Article 123301"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324004770","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
CuCl2 substituted bismuth borate tellurite glasses were examined for electrical conductivity at frequencies between 10−1 Hz and 106 Hz and temperatures between 463 K and 563K. The Almond West law used for fitting experimental data of ac conductivity, and determining cross-over frequency (ωH), frequency exponent (s), and dc conductivity (σdc). Depending on the glass composition, ac conduction process was modeled using correlated barrier hopping and non-overlapping small polaron tunneling. The imaginary component of the electric modulus included in the experimental data fitted by non-exponential Kohlrausch-Williams-Watts. Impedance examination reveals minimization of mixed former effect on electric charge transport at low frequencies in studies glasses. For x = 20, conduction occurs due to charge carriers (Cu2+ ions/polarons). An excellent match is found between the Nyquist plots and equivalent circuit models. There is good agreement between the estimated activation energy from conductivity EC (0.82–1.13 eV), electric modulus ER (0.81–1.12 eV), and impedance EZ (0.82–1.15 eV) analyses.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.