Spatially resolved CFD-DEM model with innovative experimental validation methods to improve understanding of sand retention in oil and gas wells with the consideration of filter-beds on standalone screens
Razqan Razak , Mohammad S. Alosail , Khaliq I. Musa , Paula A. Gago , Shaheryar Hussain , Zhixi Chen , Stephen Tyson , Sheikh S. Rahman
{"title":"Spatially resolved CFD-DEM model with innovative experimental validation methods to improve understanding of sand retention in oil and gas wells with the consideration of filter-beds on standalone screens","authors":"Razqan Razak , Mohammad S. Alosail , Khaliq I. Musa , Paula A. Gago , Shaheryar Hussain , Zhixi Chen , Stephen Tyson , Sheikh S. Rahman","doi":"10.1016/j.powtec.2024.120406","DOIUrl":null,"url":null,"abstract":"<div><div>Coupling CFD and DEM is commonly used to study particle-fluid flow in sand retention systems for oil and gas wells, addressing the limitations of laboratory experiments and reliance on empirical data. These numerical studies aid in optimising standalone sand screens, which are favoured over gravel-pack completions for cost-effectiveness. However, such studies overlook the critical role of the bulk filter-bed in retaining permeability for both particulate and fluid phases. This paper presents a robust numerical methodology using resolved CFD-DEM to model a sand retention system that accurately captures filter-bed permeability, which has a greater impact on sand production and retained fluid productivity than the screen itself from a long-term perspective. The numerical model's accuracy is validated through a novel experimental methodology, which involves benchmarking the numerically derived porosity and single-phase permeability against micro-CT imaging of the filter-bed. Results show strong consistency between the numerical model and micro-CT imaging of the laboratory-derived filter-bed. This validated model provides a solid foundation for running more accurate sand retention tests and improving standalone sand screen selection criteria. Future work will explore the effects of varying parameters on the filter-bed formation to determine optimal conditions for maximising sand retention while maintaining hydrocarbon productivity from a long-term perspective.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120406"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010507","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coupling CFD and DEM is commonly used to study particle-fluid flow in sand retention systems for oil and gas wells, addressing the limitations of laboratory experiments and reliance on empirical data. These numerical studies aid in optimising standalone sand screens, which are favoured over gravel-pack completions for cost-effectiveness. However, such studies overlook the critical role of the bulk filter-bed in retaining permeability for both particulate and fluid phases. This paper presents a robust numerical methodology using resolved CFD-DEM to model a sand retention system that accurately captures filter-bed permeability, which has a greater impact on sand production and retained fluid productivity than the screen itself from a long-term perspective. The numerical model's accuracy is validated through a novel experimental methodology, which involves benchmarking the numerically derived porosity and single-phase permeability against micro-CT imaging of the filter-bed. Results show strong consistency between the numerical model and micro-CT imaging of the laboratory-derived filter-bed. This validated model provides a solid foundation for running more accurate sand retention tests and improving standalone sand screen selection criteria. Future work will explore the effects of varying parameters on the filter-bed formation to determine optimal conditions for maximising sand retention while maintaining hydrocarbon productivity from a long-term perspective.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.