{"title":"Understanding the process limits of folding-shearing","authors":"Rishabh Arora , Omer Music , Julian M. Allwood","doi":"10.1016/j.jmatprotec.2024.118660","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, 44 % of sheet metal used in the production of passenger vehicles is scrapped. To reduce this scrap, folding-shearing has been proposed previously. In this process, a blank is first folded to collect excess material in a region of incompatibility. Folded sheet is then sheared in-plane to achieve the target geometry. In a preliminary study, folding-shearing was used to create a U-channel part in a compression testing machine and a process operating window was defined by considering failure limits of springback, thinning and thickening. For the first time, this study develops analytical models, validated with numerical models and physical trials to define process limits and generate an understanding of the underlying mechanics of the process limits. These analytical models can be used as a basis to develop a process operating window instantly and are shown to be within 25 % of the process limits found using numerical models and physical trials. Results show that springback, thinning and thickening limits are strongly influenced by the part radius, height, fold geometry, and material properties.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"335 ","pages":"Article 118660"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003789","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, 44 % of sheet metal used in the production of passenger vehicles is scrapped. To reduce this scrap, folding-shearing has been proposed previously. In this process, a blank is first folded to collect excess material in a region of incompatibility. Folded sheet is then sheared in-plane to achieve the target geometry. In a preliminary study, folding-shearing was used to create a U-channel part in a compression testing machine and a process operating window was defined by considering failure limits of springback, thinning and thickening. For the first time, this study develops analytical models, validated with numerical models and physical trials to define process limits and generate an understanding of the underlying mechanics of the process limits. These analytical models can be used as a basis to develop a process operating window instantly and are shown to be within 25 % of the process limits found using numerical models and physical trials. Results show that springback, thinning and thickening limits are strongly influenced by the part radius, height, fold geometry, and material properties.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.