{"title":"Incorporating grid development in capacity expansion optimisation - a case study for Indonesia","authors":"Bintang Yuwono , Lukas Kranzl , Reinhard Haas , Retno Gumilang Dewi , Ucok Welo Risma Siagian , Florian Kraxner , Ping Yowargana","doi":"10.1016/j.apenergy.2024.124837","DOIUrl":null,"url":null,"abstract":"<div><div>Capacity expansion optimisation is a widely used techno-economic analysis particularly on topics related to climate change mitigation and renewable energy transition. Using optimisation models to investigate capacity expansion in regions that potentially require significant grid infrastructure development requires incorporation of grid expansion problem within the optimisation. This study presents the development of SELARU, a spatially explicit optimisation model that incorporates the economies of scale of grid expansion using contextualized geographical feature to form the model's high-resolution spatial units. The model is used to investigate the case study of Indonesia using various spatial treatments to demonstrate the impact of detailed spatial depiction of grid expansion. Results reveal significant difference in renewable energy deployment trajectory (up to 2272 % increase in new generation capacity) between high-resolution spatial depiction of grid expansion vis-à-vis non spatially explicit energy system optimisation. Due to its high-resolution, SELARU also generates detailed information on the geographical extent of grid expansion requirement, which provides more realistic insights on governance challenges of renewable energy transition. Careful consideration of spatial representation is crucial when optimisation model is used to evaluate scenarios that concern technology selection such as renewable energy deployment or climate change mitigation.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124837"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924022207","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Capacity expansion optimisation is a widely used techno-economic analysis particularly on topics related to climate change mitigation and renewable energy transition. Using optimisation models to investigate capacity expansion in regions that potentially require significant grid infrastructure development requires incorporation of grid expansion problem within the optimisation. This study presents the development of SELARU, a spatially explicit optimisation model that incorporates the economies of scale of grid expansion using contextualized geographical feature to form the model's high-resolution spatial units. The model is used to investigate the case study of Indonesia using various spatial treatments to demonstrate the impact of detailed spatial depiction of grid expansion. Results reveal significant difference in renewable energy deployment trajectory (up to 2272 % increase in new generation capacity) between high-resolution spatial depiction of grid expansion vis-à-vis non spatially explicit energy system optimisation. Due to its high-resolution, SELARU also generates detailed information on the geographical extent of grid expansion requirement, which provides more realistic insights on governance challenges of renewable energy transition. Careful consideration of spatial representation is crucial when optimisation model is used to evaluate scenarios that concern technology selection such as renewable energy deployment or climate change mitigation.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.