{"title":"GA based construction of maximin latin hypercube designs for uncertainty design of experiment with dynamic strategy management","authors":"Dong Liu , Shaoping Wang , Jian Shi , Di Liu","doi":"10.1016/j.asoc.2024.112454","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible construction of maximin Latin Hypercube Designs (LHDs) meets the NP-hard problem known as the Maximum Diversity Problem (MDP). Traditional algorithms, such as Genetic Algorithms (GAs), face challenges like premature convergence and limited optimization performance, particularly due to the number of hyperparameters that require to be tuned and their limited ability to generalize across diverse problem domains. Thus, this paper proposed a self-adaptive method called GA with Dynamic Strategy Management for the flexibly and efficient construction of maximum LHDs. This method is based on premature convergence prediction, dynamic triggered optimization strategies, and performance control. Furthermore, nearly all critical factor, such as population initialization and selection, crossover, mutation, and local search, are involved in this framework. By comparing this method to LHD construction techniques (Simulated Annealing, Enhanced Stochastic Evolution, and Latin Hypercube Particle Swarm Optimization), as well as the adaptive GAs and state-of-the-art metaheuristics, the algorithm demonstrates superior performance due to its optimized structural self-organization.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112454"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624012286","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible construction of maximin Latin Hypercube Designs (LHDs) meets the NP-hard problem known as the Maximum Diversity Problem (MDP). Traditional algorithms, such as Genetic Algorithms (GAs), face challenges like premature convergence and limited optimization performance, particularly due to the number of hyperparameters that require to be tuned and their limited ability to generalize across diverse problem domains. Thus, this paper proposed a self-adaptive method called GA with Dynamic Strategy Management for the flexibly and efficient construction of maximum LHDs. This method is based on premature convergence prediction, dynamic triggered optimization strategies, and performance control. Furthermore, nearly all critical factor, such as population initialization and selection, crossover, mutation, and local search, are involved in this framework. By comparing this method to LHD construction techniques (Simulated Annealing, Enhanced Stochastic Evolution, and Latin Hypercube Particle Swarm Optimization), as well as the adaptive GAs and state-of-the-art metaheuristics, the algorithm demonstrates superior performance due to its optimized structural self-organization.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.