A. Tullo , C. Re , G. Cremonese , E. Martellato , R. La Grassa , N. Thomas
{"title":"Performance evaluation of pansharpening for planetary exploration: A case study on the implementation of TGO CaSSIS with MRO HiRISE","authors":"A. Tullo , C. Re , G. Cremonese , E. Martellato , R. La Grassa , N. Thomas","doi":"10.1016/j.pss.2024.105997","DOIUrl":null,"url":null,"abstract":"<div><div>The present study analyses the potential of pansharpening algorithms for planetary exploration studies, testing their performance with the 4-band images from the Colour and Stereo Surface Imaging System (CaSSIS) aboard the Exomars 2016 Trace Grace Orbiter (TGO) using HiRISE images from the Mars Reconnaissance Orbiter (MRO) mission as the base. Due to the lack of suitable open-source tools, a suite of scripts was developed to improve alignment between images and enable different component substitution (CS) pansharpening algorithms. The tools developed were tested on a database of images encompassing several regions of Mars to explore its vast diversity in colours, tones, and textures. Then, the resulting images were investigated using spectral and structural performance indices, comparing the results with the source images and the colour information from the HiRISE central channels.</div><div>The results show that a substantial number of the tested algorithms are more than suitable for data enhancement, showing a considerable improvement in the structural characteristics of the images without sacrificing their spectral characteristics. In detail, the Gram-Schmidt method, widely used in terrestrial pansharpening, turns out to be the best compromise among the tested algorithms. Regarding the other tested algorithms, GIHS and the MMSE Brovey, a modified version of the classic Brovey, show the most significant increase in structural properties, while GHPF and GHPM show the interesting ability to maintain virtually unchanged spectral conditions of the multispectral source data.</div><div>In addition, the analysis reveals the applicability of pansharpening at a ground resolution increment up to 18 times, from 4.5 up to 0.25 m/px, a broader range than is usually used in traditional pansharpening.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"254 ","pages":"Article 105997"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324001612","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study analyses the potential of pansharpening algorithms for planetary exploration studies, testing their performance with the 4-band images from the Colour and Stereo Surface Imaging System (CaSSIS) aboard the Exomars 2016 Trace Grace Orbiter (TGO) using HiRISE images from the Mars Reconnaissance Orbiter (MRO) mission as the base. Due to the lack of suitable open-source tools, a suite of scripts was developed to improve alignment between images and enable different component substitution (CS) pansharpening algorithms. The tools developed were tested on a database of images encompassing several regions of Mars to explore its vast diversity in colours, tones, and textures. Then, the resulting images were investigated using spectral and structural performance indices, comparing the results with the source images and the colour information from the HiRISE central channels.
The results show that a substantial number of the tested algorithms are more than suitable for data enhancement, showing a considerable improvement in the structural characteristics of the images without sacrificing their spectral characteristics. In detail, the Gram-Schmidt method, widely used in terrestrial pansharpening, turns out to be the best compromise among the tested algorithms. Regarding the other tested algorithms, GIHS and the MMSE Brovey, a modified version of the classic Brovey, show the most significant increase in structural properties, while GHPF and GHPM show the interesting ability to maintain virtually unchanged spectral conditions of the multispectral source data.
In addition, the analysis reveals the applicability of pansharpening at a ground resolution increment up to 18 times, from 4.5 up to 0.25 m/px, a broader range than is usually used in traditional pansharpening.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research