Hui Ding , Yuhan Huang , Nianzhe Chen , Jiacheng Lu , Shaochun Li
{"title":"Image inpainting for periodic discrete density defects via frequency analysis and an adaptive transformer-GAN network","authors":"Hui Ding , Yuhan Huang , Nianzhe Chen , Jiacheng Lu , Shaochun Li","doi":"10.1016/j.asoc.2024.112410","DOIUrl":null,"url":null,"abstract":"<div><div>Image inpainting based on deep learning has made significant progress in addressing regular and coherent irregular defects. However, little has been studied on periodic discrete density (PDD) defects that are prevalent in microscopic images obtained by advanced instruments like transmission electron microscopes (TEM) and scanning tunneling microscopes (STM). The PDD defects usually introduce low-frequency noise in the fast Fourier transform (FFT) images, preventing the extraction of useful information particularly in the low-frequency regions. Despite its significant impact, no method has been reported to date to efficiently remove the PDD-induced noise from the FFT of high-resolution microscopic images. In this study, we introduced a novel GAN-based two-stage network (FGTNet), a novel coarse-to-fine inpainting framework, which is built upon the architecture of Generative Adversarial Networks (GAN) and transformer blocks. By integrating the information from both frequency and spatial domains, contextual structures are preserved and high-frequency details are generated in our method. We also proposed an adaptive-window transformer block (A-LeWin) to enhance the spatial feature representation and to fully use the information around the defects. To validate our approach, we constructed a specialized microscopic image dataset with 2730 training samples and 105 testing samples. For comparison, we also extended the experiments to the public Describable Texture Dataset (DTD) and coherence defects that are often discussed in the field of image inpainting. The experiment results indicate that our method performs well on six pixel-level and perceptual-level metrics, and shows the best performance and visual effect of coherent texture.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112410"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624011840","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image inpainting based on deep learning has made significant progress in addressing regular and coherent irregular defects. However, little has been studied on periodic discrete density (PDD) defects that are prevalent in microscopic images obtained by advanced instruments like transmission electron microscopes (TEM) and scanning tunneling microscopes (STM). The PDD defects usually introduce low-frequency noise in the fast Fourier transform (FFT) images, preventing the extraction of useful information particularly in the low-frequency regions. Despite its significant impact, no method has been reported to date to efficiently remove the PDD-induced noise from the FFT of high-resolution microscopic images. In this study, we introduced a novel GAN-based two-stage network (FGTNet), a novel coarse-to-fine inpainting framework, which is built upon the architecture of Generative Adversarial Networks (GAN) and transformer blocks. By integrating the information from both frequency and spatial domains, contextual structures are preserved and high-frequency details are generated in our method. We also proposed an adaptive-window transformer block (A-LeWin) to enhance the spatial feature representation and to fully use the information around the defects. To validate our approach, we constructed a specialized microscopic image dataset with 2730 training samples and 105 testing samples. For comparison, we also extended the experiments to the public Describable Texture Dataset (DTD) and coherence defects that are often discussed in the field of image inpainting. The experiment results indicate that our method performs well on six pixel-level and perceptual-level metrics, and shows the best performance and visual effect of coherent texture.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.