{"title":"On the effect of a tangential intake on the performance of natural dry draft cooling towers in crosswind conditions","authors":"Behzad Zakeri , Morteza Khashehchi , Pooyan Rahmanivahid , Milad Heidari","doi":"10.1016/j.tsep.2024.103036","DOIUrl":null,"url":null,"abstract":"<div><div>Crosswind has a negative effect on the performance of natural draft dry cooling towers, NDDCTs, serving thermal power plants. This, in turn, lowers the efficiency of the thermal power plant as less heat can be rejected to the ambient air through the tower. This occurs due to interaction of cross wind and cooling tower structure. This phenomenon leads to generation of primary and secondary vortices inside the tower which located in leeward side (downwind side) and windward side (upwind side) of the tower, respectively. In an innovative interpretation of the challenge, this paper aims at directing the crosswind flow through the tower shell above the heat exchangers to assist the buoyancy-induced plume. In particular, the intake of the crosswind through the tower is utilized as a tangentially-induced swirl source to help the upward draft, and its penetration in the ambient air, enhancing the tower performance which otherwise would have been significantly deteriorated. Two independent approaches are presented to assess the proposed design quantitatively. CFD simulation of a small scale tower model has revealed significant performance improvement (in terms of natural draft blockage and outlet flow velocity) when the crosswind is allowed to penetrate the tower shell, through an opening on the tower side-wall, above the heat exchangers. Results of the simulations have been validated against the experimental data collected using the tests ran on an identical model, with and without the side opening, in a wind tunnel.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103036"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006541","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Crosswind has a negative effect on the performance of natural draft dry cooling towers, NDDCTs, serving thermal power plants. This, in turn, lowers the efficiency of the thermal power plant as less heat can be rejected to the ambient air through the tower. This occurs due to interaction of cross wind and cooling tower structure. This phenomenon leads to generation of primary and secondary vortices inside the tower which located in leeward side (downwind side) and windward side (upwind side) of the tower, respectively. In an innovative interpretation of the challenge, this paper aims at directing the crosswind flow through the tower shell above the heat exchangers to assist the buoyancy-induced plume. In particular, the intake of the crosswind through the tower is utilized as a tangentially-induced swirl source to help the upward draft, and its penetration in the ambient air, enhancing the tower performance which otherwise would have been significantly deteriorated. Two independent approaches are presented to assess the proposed design quantitatively. CFD simulation of a small scale tower model has revealed significant performance improvement (in terms of natural draft blockage and outlet flow velocity) when the crosswind is allowed to penetrate the tower shell, through an opening on the tower side-wall, above the heat exchangers. Results of the simulations have been validated against the experimental data collected using the tests ran on an identical model, with and without the side opening, in a wind tunnel.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.