Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-11-16 DOI:10.1016/j.solener.2024.113111
Tanvir Ahmed , Sheikh Noman Shiddique , Abdul Kuddus , Mainul Hossain , Shinichiro Mouri , Jaker Hossain
{"title":"Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells","authors":"Tanvir Ahmed ,&nbsp;Sheikh Noman Shiddique ,&nbsp;Abdul Kuddus ,&nbsp;Mainul Hossain ,&nbsp;Shinichiro Mouri ,&nbsp;Jaker Hossain","doi":"10.1016/j.solener.2024.113111","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite materials are revolutionizing the solar cell (SC) industry, continually enhancing their properties and establishing a prominent photovoltaic technology. Among these, BaSnS<sub>3</sub> (BTS) and AgTaS<sub>3</sub> (ATS) stand out for their strong potential as absorber layers. These inorganic chalcogenide perovskites address the drawbacks of their organic counterparts, being both lead-free and non-toxic, thereby making them highly suitable for photovoltaic (PV) applications. The exploration of BTS and ATS as absorber layers in a tandem solar cell’s top and bottom cells has yielded remarkable outcomes. The innovative tandem solar cell design features a top cell structured as n-WS<sub>2</sub>/<em>p</em>-BaSnS<sub>3</sub>/<em>p</em><sup>+</sup>-MoS<sub>2</sub> and a bottom cell configured as <em>n</em>-WS<em><sub>2</sub></em>/<em>p</em>-AgTaS<sub>3</sub>/<em>p</em><sup>+</sup>-GeS. This theoretical study using SCAPS-1D demonstrates a high efficiency of 42.57 % with a <em>V</em><sub>OC</sub> of 2.03 V, a <em>J</em><sub>SC</sub> of 23.29 mA/cm<sup>2</sup>, and an <em>FF</em> of 89.85 %. These impressive results are achieved with adjusted layer thickness, carrier doping and defect levels, highlighting the strong potential of BaSnS<sub>3</sub> and AgTaS<sub>3</sub> photoactive materials. The findings reveal the viability of innovative, all-inorganic perovskite-based tandem solar cells, offering a promising avenue for future sustainable and high-efficiency photovoltaic device technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113111"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24008065","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite materials are revolutionizing the solar cell (SC) industry, continually enhancing their properties and establishing a prominent photovoltaic technology. Among these, BaSnS3 (BTS) and AgTaS3 (ATS) stand out for their strong potential as absorber layers. These inorganic chalcogenide perovskites address the drawbacks of their organic counterparts, being both lead-free and non-toxic, thereby making them highly suitable for photovoltaic (PV) applications. The exploration of BTS and ATS as absorber layers in a tandem solar cell’s top and bottom cells has yielded remarkable outcomes. The innovative tandem solar cell design features a top cell structured as n-WS2/p-BaSnS3/p+-MoS2 and a bottom cell configured as n-WS2/p-AgTaS3/p+-GeS. This theoretical study using SCAPS-1D demonstrates a high efficiency of 42.57 % with a VOC of 2.03 V, a JSC of 23.29 mA/cm2, and an FF of 89.85 %. These impressive results are achieved with adjusted layer thickness, carrier doping and defect levels, highlighting the strong potential of BaSnS3 and AgTaS3 photoactive materials. The findings reveal the viability of innovative, all-inorganic perovskite-based tandem solar cells, offering a promising avenue for future sustainable and high-efficiency photovoltaic device technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和分析具有协同优化的顶部 BaSnS3 和底部 AgTaS3 包晶子电池的无机串联结构
过氧化物材料正在彻底改变太阳能电池(SC)行业,不断提高其性能,并成为一种重要的光伏技术。其中,BaSnS3 (BTS) 和 AgTaS3 (ATS) 因其作为吸收层的强大潜力而脱颖而出。这些无机瑀质包晶解决了有机包晶的缺点,既无铅又无毒,因此非常适合光伏(PV)应用。将 BTS 和 ATS 作为串联太阳能电池顶部和底部电池的吸收层的探索取得了显著成果。创新的串联太阳能电池设计采用了 n-WS2/p-BaSnS3/p+-MoS2 结构的顶部电池和 n-WS2/p-AgTaS3/p+-GeS 结构的底部电池。这项使用 SCAPS-1D 进行的理论研究表明,在 2.03 V 的 VOC、23.29 mA/cm2 的 JSC 和 89.85 % 的 FF 下,效率高达 42.57 %。通过调整层厚、载流子掺杂和缺陷水平,这些令人印象深刻的结果得以实现,凸显了 BaSnS3 和 AgTaS3 光活性材料的强大潜力。这些研究结果揭示了创新的、基于全无机包晶的串联太阳能电池的可行性,为未来的可持续高效光伏器件技术提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1