Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-11-06 DOI:10.1016/j.orgel.2024.107161
Bo Qin , Xinying Chen , Xinyi Huang , Zhen He , Tingjun Wu , Dongjie Wang , Yu Huang , Jiang Wang , Zheling Zhang , Jian Xiong , Jian Zhang
{"title":"Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells","authors":"Bo Qin ,&nbsp;Xinying Chen ,&nbsp;Xinyi Huang ,&nbsp;Zhen He ,&nbsp;Tingjun Wu ,&nbsp;Dongjie Wang ,&nbsp;Yu Huang ,&nbsp;Jiang Wang ,&nbsp;Zheling Zhang ,&nbsp;Jian Xiong ,&nbsp;Jian Zhang","doi":"10.1016/j.orgel.2024.107161","DOIUrl":null,"url":null,"abstract":"<div><div>The hydrophobic organic hole transport layer, Poly[bis(4-phenyl)(2,4,6-triMethylphenyl)amine] (PTAA), in inverted perovskite solar cells leads to interfacial contact issues at the anode. These issues result in significant non-radiative recombination losses and unstable interfaces, which hinder the enhancement of both device performance and stability. In this work, we have developed a green, low-cost, solution-processable anode interfacial material called norfloxacin (NFXc) to enhance the wettability of PTAA, addressing the wettability mismatch between the hydrophobic PTAA layer and the highly polar perovskite precursor. The impact of NFXc on the physical properties of the films and devices has been systematically investigated. The results demonstrate that trap passivation, perovskite crystallinity adjustment, and improved charge transfer dynamics are achieved with this buried interface modification. With the introduction of NFXc, a power conversion efficiency of 19.46 % and a fill factor of 83.05 % were achieved based on solution-processed MAPbI<sub>3</sub>/PCBM heterojunctions with NFXc modification. Additionally, the experiments indicated that the NFXc-modified device can maintain its initial PCE value even after 3500 h.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"136 ","pages":"Article 107161"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001721","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrophobic organic hole transport layer, Poly[bis(4-phenyl)(2,4,6-triMethylphenyl)amine] (PTAA), in inverted perovskite solar cells leads to interfacial contact issues at the anode. These issues result in significant non-radiative recombination losses and unstable interfaces, which hinder the enhancement of both device performance and stability. In this work, we have developed a green, low-cost, solution-processable anode interfacial material called norfloxacin (NFXc) to enhance the wettability of PTAA, addressing the wettability mismatch between the hydrophobic PTAA layer and the highly polar perovskite precursor. The impact of NFXc on the physical properties of the films and devices has been systematically investigated. The results demonstrate that trap passivation, perovskite crystallinity adjustment, and improved charge transfer dynamics are achieved with this buried interface modification. With the introduction of NFXc, a power conversion efficiency of 19.46 % and a fill factor of 83.05 % were achieved based on solution-processed MAPbI3/PCBM heterojunctions with NFXc modification. Additionally, the experiments indicated that the NFXc-modified device can maintain its initial PCE value even after 3500 h.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于诺氟沙星的界面改性用于提高倒置型过氧化物太阳能电池的性能
倒置型过氧化物太阳能电池中的疏水性有机空穴传输层--聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)会导致阳极出现界面接触问题。这些问题导致大量的非辐射重组损耗和不稳定的界面,从而阻碍了设备性能和稳定性的提高。在这项工作中,我们开发了一种名为诺氟沙星(NFXc)的绿色、低成本、可溶液加工的阳极界面材料,以增强 PTAA 的润湿性,解决疏水性 PTAA 层与高极性过氧化物前驱体之间的润湿性不匹配问题。我们系统地研究了 NFXc 对薄膜和器件物理性质的影响。结果表明,通过这种埋入式界面修饰,可以实现阱钝化、包晶石结晶度调整和电荷转移动力学的改善。引入 NFXc 后,基于 NFXc 修饰的溶液加工 MAPbI3/PCBM 异质结的功率转换效率达到 19.46%,填充因子达到 83.05%。此外,实验还表明,NFXc 修饰的器件在 3500 小时后仍能保持其初始 PCE 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
High triplet hexahydroacridine derivatives as a host prevent exciton diffusion to adjacent layers in solution processed OLEDs Naphthalene-Arylamine starburst architectures: Novel hole transport materials for enhanced OLED performance Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells Recent progress in high-performance thermally activated delayed fluorescence exciplexes based on multiple reverse intersystem crossing channels Multifunctional thermally activated delayed fluorescence emitter for both doped and non-doped organic light emitting diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1