{"title":"Wind-induced vibration response and suppression of the cable-truss flexible support photovoltaic module array","authors":"Yunqiang Wu , Yue Wu , Ying Sun , Xiaoying Sun","doi":"10.1016/j.solener.2024.113096","DOIUrl":null,"url":null,"abstract":"<div><div>The flexible photovoltaic module support system, which can be used in complex and long-span environments, has been widely studied and applied in recent years. In this study, the wind-induced vibration characteristics and the suppression measures of a 35-meter-span cable-truss support photovoltaic module system array are studied. Firstly, based on the similarity theory of the wind tunnel test, the scaled aeroelastic test model is made and verified. Then, the wind-induced vibration characteristics and group shelter effects of the array are studied and the influence of the initial prestress of the main cables is discussed. Finally, the effective wind suppression measures are proposed by adding the connection cables and inclined cables and verified by the wind tunnel test. The results show that the maximum wind-induced response of the flexible PV array appears in the first row of the windward row under different wind directions, the wind-induced vibration in the middle region is significantly reduced due to the shelter of the PV array and the amplitude of wind-induced vibration in the wake region will be amplified. At 0° wind direction, the wind-induced vibration shelter effect is more obvious. The improvement of the initial prestress of the main cable is ineffective in improving the wind resistance. When no wind suppression measures are taken, the critical wind speed of the new photovoltaic system is 36.1 m/s, which can meet the requirements of most inland areas. Wind suppression measures can effectively improve the wind resistance of photovoltaic arrays, and the critical wind speed can reach 45 m/s.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113096"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The flexible photovoltaic module support system, which can be used in complex and long-span environments, has been widely studied and applied in recent years. In this study, the wind-induced vibration characteristics and the suppression measures of a 35-meter-span cable-truss support photovoltaic module system array are studied. Firstly, based on the similarity theory of the wind tunnel test, the scaled aeroelastic test model is made and verified. Then, the wind-induced vibration characteristics and group shelter effects of the array are studied and the influence of the initial prestress of the main cables is discussed. Finally, the effective wind suppression measures are proposed by adding the connection cables and inclined cables and verified by the wind tunnel test. The results show that the maximum wind-induced response of the flexible PV array appears in the first row of the windward row under different wind directions, the wind-induced vibration in the middle region is significantly reduced due to the shelter of the PV array and the amplitude of wind-induced vibration in the wake region will be amplified. At 0° wind direction, the wind-induced vibration shelter effect is more obvious. The improvement of the initial prestress of the main cable is ineffective in improving the wind resistance. When no wind suppression measures are taken, the critical wind speed of the new photovoltaic system is 36.1 m/s, which can meet the requirements of most inland areas. Wind suppression measures can effectively improve the wind resistance of photovoltaic arrays, and the critical wind speed can reach 45 m/s.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass