Effectiveness of Musa balbisiana bract toward chromium removal from industrial tannery effluent: Optimization, kinetics, isotherms, regeneration, and cost estimation
Divya Baskaran , Becky Miriyam I , Palani R , Hun-Soo Byun
{"title":"Effectiveness of Musa balbisiana bract toward chromium removal from industrial tannery effluent: Optimization, kinetics, isotherms, regeneration, and cost estimation","authors":"Divya Baskaran , Becky Miriyam I , Palani R , Hun-Soo Byun","doi":"10.1016/j.bej.2024.109565","DOIUrl":null,"url":null,"abstract":"<div><div>Eradicating chromium from industrial effluent is essential for environmental security and economic reasons. This study investigates the potency of activated <em>Musa balbisiana</em> bract biomass as a biosorbent to remove hexavalent chromium (Cr<sup>6+</sup>) from real industrial tannery effluent (ITE). The characterization study exemplifies the existence of irregular structures and excessive cavities, and the occurrence of functional groups (hydroxyl, carboxyl, esters, and alkynes) are benefitting the deposition of Cr<sup>6+</sup> on the biosorbent. A maximum biosorption capacity of 42.75 ± 0.21 mg/g was observed at an optimum pH of 6.5, biosorbent dosage of 0.3 g, initial Cr<sup>6+</sup> concentration of 50 mg/L, and contact time of 120 min. The validation experiment confirmed the removal efficiency of total chromium, trivalent chromium, and Cr<sup>6+</sup> 92.56 ± 0.80 %, 98.63 ± 0.20 %, and 96.21 ± 0.50 %, respectively. Among the models, Langmuir isotherm (R<sup>2</sup>: 0.9992) and pseudo-second order (R<sup>2</sup>: 0.9999) kinetic models greatly correlate with the equilibrium data. A 2-tier membrane module was examined for continuous study and reached 88.23 ± 0.60 % Cr<sup>6+</sup> removal. Statistical analysis was performed to confirm the significance of adsorption results. The likelihood of the desorption and regeneration of the treated biosorbent was investigated. The estimated cost per volume of ITE treated and unit of pollutant removal from ITE employing <em>Musa balbisiana</em> bract biosorbent is around $3.08/m<sup>3</sup> and $3.75/kg.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109565"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003528","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eradicating chromium from industrial effluent is essential for environmental security and economic reasons. This study investigates the potency of activated Musa balbisiana bract biomass as a biosorbent to remove hexavalent chromium (Cr6+) from real industrial tannery effluent (ITE). The characterization study exemplifies the existence of irregular structures and excessive cavities, and the occurrence of functional groups (hydroxyl, carboxyl, esters, and alkynes) are benefitting the deposition of Cr6+ on the biosorbent. A maximum biosorption capacity of 42.75 ± 0.21 mg/g was observed at an optimum pH of 6.5, biosorbent dosage of 0.3 g, initial Cr6+ concentration of 50 mg/L, and contact time of 120 min. The validation experiment confirmed the removal efficiency of total chromium, trivalent chromium, and Cr6+ 92.56 ± 0.80 %, 98.63 ± 0.20 %, and 96.21 ± 0.50 %, respectively. Among the models, Langmuir isotherm (R2: 0.9992) and pseudo-second order (R2: 0.9999) kinetic models greatly correlate with the equilibrium data. A 2-tier membrane module was examined for continuous study and reached 88.23 ± 0.60 % Cr6+ removal. Statistical analysis was performed to confirm the significance of adsorption results. The likelihood of the desorption and regeneration of the treated biosorbent was investigated. The estimated cost per volume of ITE treated and unit of pollutant removal from ITE employing Musa balbisiana bract biosorbent is around $3.08/m3 and $3.75/kg.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.