Communication subspace dynamics of the canonical olfactory pathway

IF 4.6 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES iScience Pub Date : 2024-10-28 DOI:10.1016/j.isci.2024.111275
Joaquín Gonzalez , Pablo Torterolo , Kevin A. Bolding , Adriano B.L. Tort
{"title":"Communication subspace dynamics of the canonical olfactory pathway","authors":"Joaquín Gonzalez ,&nbsp;Pablo Torterolo ,&nbsp;Kevin A. Bolding ,&nbsp;Adriano B.L. Tort","doi":"10.1016/j.isci.2024.111275","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111275"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224025008","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
典型嗅觉通路的通信子空间动力学
了解不同脑区如何进行交流对于阐明认知的内在机制至关重要。神经群相互作用的一种可能方式是通过通信子空间,即状态空间中能够传输与行为相关的尖峰模式的特定区域。在嗅觉系统中,不同的神经群是否采用了这种机制仍不清楚。我们的研究揭示了主要嗅觉通路(嗅球到嗅皮层)中的神经元集合通过通信子空间相互作用,该子空间由鼻呼吸驱动,允许前馈和反馈传输沿着嗅觉周期发生分离。此外,我们的研究结果表明,子空间通信与两个区域的活动有因果关系,在麻醉期间会受到阻碍,并传输低维的气味表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
iScience
iScience Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
1.70%
发文量
1972
审稿时长
6 weeks
期刊介绍: Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results. We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.
期刊最新文献
Drug nanocrystals: Surface engineering and its applications in targeted delivery Fatty acid abnormalities in cystic fibrosis–the missing link for a cure? Diagnostic and therapeutic optical imaging in cardiovascular diseases A strategic approach to evaluating battery innovation investments Personalized and adaptive interventions for smoking cessation: Emerging trends and determinants of efficacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1