Study of environment friendly gas mixtures for the Resistive Plate Chambers of the ATLAS phase-2 upgrade

G. Proto, ATLAS Muon Community
{"title":"Study of environment friendly gas mixtures for the Resistive Plate Chambers of the ATLAS phase-2 upgrade","authors":"G. Proto,&nbsp;ATLAS Muon Community","doi":"10.1016/j.nima.2024.170014","DOIUrl":null,"url":null,"abstract":"<div><div>The standard gas mixture for the Resistive Plate Chambers (RPC), composed of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>/</mo><mi>i</mi><mo>−</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>/</mo><msub><mrow><mi>SF</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, allows the detector operation in avalanche mode, as required by the high-luminosity collider experiments. The gas density, the low current and the comfortable avalanche-streamer separation guarantee high detection efficiency, rate capability and slow detector aging. However, the mixture has a high Global Warming Potential (GWP <span><math><mi>∼</mi></math></span>1430), primarily due to the presence of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. The <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>SF</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> are not recommended for industrial uses anymore, thus their availability will be increasingly difficult over time and the search for an alternative gas mixture is then of absolute priority within the RPC community. CERN is also driving efforts to reduce these gases, as they contribute significantly to the LHC greenhouse gas emissions. Within the ATLAS experiment, the search for an environment-friendly gas mixture involves both the legacy system and the new generation of RPC detectors for the HL-LHC [1]. The thin 1 mm gas gap of the latter requires a high-density in order to achieve high efficiency, due to the less active target available for the primary ionization. The mixture should also guarantee good timing performance and ensure the detector longevity compared with the standard one. In this paper, the results obtained on a RPC operated with alternative gas mixtures are shown, following two different approaches. The first study consists of the replacement of the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> with a mixture of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>/</mo><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, which has a significantly lower Global Warming Potential (GWP<span><math><mi>∼</mi></math></span> 200). In order to achieve an efficiency greater than 90%, the concentration of <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> must be maintained above 50%. Meanwhile, the addition of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, improves the time resolution, reaching approximately 285 ps. The second approach consists in adding a modest fraction of <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the standard gas, with the aim to reduce the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> emissions. In this case, the currents are lower compared to those observed with the <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>/</mo><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-based gas mixtures, and no significant impact on detector aging is expected, as the overall composition of the mixture remains similar to the standard gas. In both approaches, the concentration of <span><math><msub><mrow><mi>SF</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> must be maintained at a minimum of 1% to prevent premature streamer formation and the associated increase in current. The paper provides a detailed study of efficiency, time resolution, and current under different irradiation backgrounds.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1070 ","pages":"Article 170014"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009409","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The standard gas mixture for the Resistive Plate Chambers (RPC), composed of C2H2F4/iC4H10/SF6, allows the detector operation in avalanche mode, as required by the high-luminosity collider experiments. The gas density, the low current and the comfortable avalanche-streamer separation guarantee high detection efficiency, rate capability and slow detector aging. However, the mixture has a high Global Warming Potential (GWP 1430), primarily due to the presence of C2H2F4. The C2H2F4 and SF6 are not recommended for industrial uses anymore, thus their availability will be increasingly difficult over time and the search for an alternative gas mixture is then of absolute priority within the RPC community. CERN is also driving efforts to reduce these gases, as they contribute significantly to the LHC greenhouse gas emissions. Within the ATLAS experiment, the search for an environment-friendly gas mixture involves both the legacy system and the new generation of RPC detectors for the HL-LHC [1]. The thin 1 mm gas gap of the latter requires a high-density in order to achieve high efficiency, due to the less active target available for the primary ionization. The mixture should also guarantee good timing performance and ensure the detector longevity compared with the standard one. In this paper, the results obtained on a RPC operated with alternative gas mixtures are shown, following two different approaches. The first study consists of the replacement of the C2H2F4 with a mixture of C3H2F4/CO2, which has a significantly lower Global Warming Potential (GWP 200). In order to achieve an efficiency greater than 90%, the concentration of C2H2F4 must be maintained above 50%. Meanwhile, the addition of CO2, improves the time resolution, reaching approximately 285 ps. The second approach consists in adding a modest fraction of CO2 in the standard gas, with the aim to reduce the C2H2F4 emissions. In this case, the currents are lower compared to those observed with the C3H2F4/CO2-based gas mixtures, and no significant impact on detector aging is expected, as the overall composition of the mixture remains similar to the standard gas. In both approaches, the concentration of SF6 must be maintained at a minimum of 1% to prevent premature streamer formation and the associated increase in current. The paper provides a detailed study of efficiency, time resolution, and current under different irradiation backgrounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 ATLAS 第二阶段升级的电阻板室的环保型混合气体研究
电阻板室(RPC)的标准混合气体由 C2H2F4/i-C4H10/SF6 组成,允许探测器在雪崩模式下运行,这也是高光度对撞机实验所要求的。气体密度、低电流和雪崩流分离的舒适性保证了高探测效率、速率能力和探测器的缓慢老化。不过,这种混合物的全球升温潜能值(GWP ∼1430)较高,主要原因是其中含有 C2H2F4。C2H2F4 和 SF6 已不再被推荐用于工业用途,因此,随着时间的推移,它们的供应将越来越困难,因此,在 RPC 社区内,寻找替代气体混合物是绝对的当务之急。欧洲核子研究中心也在努力减少这些气体,因为它们对大型强子对撞机的温室气体排放有很大影响。在 ATLAS 实验中,寻找环境友好型气体混合物的工作既涉及传统系统,也涉及用于 HL-LHC 的新一代 RPC 探测器[1]。后者 1 毫米的薄气隙需要高密度才能实现高效率,这是因为初级电离可用的活性目标较少。与标准探测器相比,这种混合物还应保证良好的定时性能,并确保探测器的使用寿命。本文通过两种不同的方法,展示了使用替代混合气体运行的 RPC 所取得的结果。第一项研究是用全球变暖潜能值(GWP∼ 200)显著较低的 C3H2F4/CO2 混合物替代 C2H2F4。为了达到 90% 以上的效率,C2H2F4 的浓度必须保持在 50% 以上。同时,二氧化碳的加入提高了时间分辨率,达到约 285 ps。第二种方法是在标准气体中加入适量的二氧化碳,以减少 C2H2F4 的排放。在这种情况下,电流低于 C3H2F4/CO2 混合气体中的电流,而且由于混合物的总体成分与标准气体相似,预计不会对探测器的老化产生重大影响。在这两种方法中,SF6 的浓度都必须保持在最低 1% 的水平,以防止过早形成流束和相关的电流增加。本文对不同辐照背景下的效率、时间分辨率和电流进行了详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
21.40%
发文量
787
审稿时长
1 months
期刊介绍: Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section. Theoretical as well as experimental papers are accepted.
期刊最新文献
Editorial Board Editorial Board Estimation of Bonner sphere cross-talking with Monte Carlo method and spectrometer calibration with 241Am-Be neutron source Commissioning a time-gated camera for fast neutron beamline spatial-energy characterization at LANSCE-WNR spallation source The high-precision detector of the JUNO-TAO experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1