Shixiong Peng , Qifei Pei , Zhanqing Lu , Hongying Xia , Linqing Dai , Yingjie Xu , Libo Zhang
{"title":"Experiment on selective dynamic extraction of germanium by ultrasonic enhanced N235 extraction resin under complex system","authors":"Shixiong Peng , Qifei Pei , Zhanqing Lu , Hongying Xia , Linqing Dai , Yingjie Xu , Libo Zhang","doi":"10.1016/j.cep.2024.110042","DOIUrl":null,"url":null,"abstract":"<div><div>Germanium plays an irreplaceable role in the field of modern high-tech materials and is an important strategic metal resource. N235 extraction resin was used to selectively extract [Ge(C<sub>4</sub>O<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]<sup>2-</sup>. Under the condition of ultrasonic power at 120 W in a water bath, the extraction rate of germanium was 97.32 %. The extraction rate of zinc was 2.37 % under the conditions of a three-stage solid phase extraction column in series (single-stage filling N235 extraction resin 0.8 g), reaction temperature 25 °C, tartaric acid concentration of 2.0 g/L, and the dwell time is 4.1min. The saturated adsorption capacity of the resin is 51.90 mg/g. The extraction rate of germanium increased by 14.4 % under ultrasonic-assisted strengthening conditions. The [Ge(C<sub>4</sub>O<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]<sup>2-</sup> can be separated from the resin by NaOH solution. The desorption rate of germanium was 94.12 % under the condition of water bath ultrasonic power of 120W, 30 ml concentration of 3.5 mol/L NaOH solution, and the dwell time is 5.2min. Under the optimum conditions, the extraction rate of N235 extraction resin was 85.23 % after repeated regeneration five times. The results demonstrate that the extraction resin exhibits high selectivity and reproducibility in complex systems, presenting a new method for extracting germanium under complex conditions.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"206 ","pages":"Article 110042"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003805","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Germanium plays an irreplaceable role in the field of modern high-tech materials and is an important strategic metal resource. N235 extraction resin was used to selectively extract [Ge(C4O6H4)3]2-. Under the condition of ultrasonic power at 120 W in a water bath, the extraction rate of germanium was 97.32 %. The extraction rate of zinc was 2.37 % under the conditions of a three-stage solid phase extraction column in series (single-stage filling N235 extraction resin 0.8 g), reaction temperature 25 °C, tartaric acid concentration of 2.0 g/L, and the dwell time is 4.1min. The saturated adsorption capacity of the resin is 51.90 mg/g. The extraction rate of germanium increased by 14.4 % under ultrasonic-assisted strengthening conditions. The [Ge(C4O6H4)3]2- can be separated from the resin by NaOH solution. The desorption rate of germanium was 94.12 % under the condition of water bath ultrasonic power of 120W, 30 ml concentration of 3.5 mol/L NaOH solution, and the dwell time is 5.2min. Under the optimum conditions, the extraction rate of N235 extraction resin was 85.23 % after repeated regeneration five times. The results demonstrate that the extraction resin exhibits high selectivity and reproducibility in complex systems, presenting a new method for extracting germanium under complex conditions.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.