Chandra Sekhar Espenti , T.V. Surendra , K.S.V. Krishna Rao , Mushtaq Ahmad Ansari , Kummara Madhusudana Rao , Sung Soo Han
{"title":"Harnessing durable antimicrobial cellulose cotton fabric coated with silver nanoparticles via a green approach for photocatalytic applications","authors":"Chandra Sekhar Espenti , T.V. Surendra , K.S.V. Krishna Rao , Mushtaq Ahmad Ansari , Kummara Madhusudana Rao , Sung Soo Han","doi":"10.1016/j.molliq.2024.126483","DOIUrl":null,"url":null,"abstract":"<div><div>Growing concern regarding microbial infections has prompted significant research into antimicrobial textiles. This study presents a green, eco-friendly approach to imparting antimicrobial properties to cellulose cotton fabric (CCF) by depositing silver nanoparticles (AgNPs) synthesized using <em>Bryophyllum pinnatum</em> (BP) leaf extract as a natural reducing agent. To improve the durability of AgNPs on CCF, an environmentally friendly method was used to synthesize AgNPs, which were subsequently applied to biocompatible CCF using BP leaf extract as a natural reducing agent. Owing to the presence of phytochemicals, the AgNPs were rapidly produced with a uniform size and shape under ambient conditions. The synthesized nanoparticles were characterized using techniques such as ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectrophotometry, and X-ray diffraction (XRD) analysis to confirm their size (average size 60.4 ± 8.5 nm), morphology, and crystalline structure. Subsequently, the CCF was coated with these AgNPs using an eco-friendly deposition method. The mechanical properties of the treated fabric were assessed to ensure that the coating process did not compromise the fabric’s integrity or safety for human use. The results indicated that the CCF–BP–AgNPs retained its mechanical strength and exhibited no cytotoxic effects, regarding it suitable for various applications in healthcare, apparel, and household textiles. The antibacterial activity of the CCF–BP–AgNPs was evaluated by measuring zone inhibition against <em>Escherichia coli</em>, <em>Bacillus subtilis</em>, and <em>Staphylococcus aureus</em>. The photocatalytic activity of the coated cloth was assessed by observing the breakdown of organic dye Congo Red (CR) in simulated sunlight. Interestingly, the CCF–BP–AgNPs demonstrated effective photocatalytic degradation of CR, revealing its potential for wastewater treatment and environmental remediation applications. The fabric’s antimicrobial properties remained intact throughout the photocatalytic process, enabling disinfection and pollutant breakdown to occur simultaneously.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"416 ","pages":"Article 126483"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016773222402542X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Growing concern regarding microbial infections has prompted significant research into antimicrobial textiles. This study presents a green, eco-friendly approach to imparting antimicrobial properties to cellulose cotton fabric (CCF) by depositing silver nanoparticles (AgNPs) synthesized using Bryophyllum pinnatum (BP) leaf extract as a natural reducing agent. To improve the durability of AgNPs on CCF, an environmentally friendly method was used to synthesize AgNPs, which were subsequently applied to biocompatible CCF using BP leaf extract as a natural reducing agent. Owing to the presence of phytochemicals, the AgNPs were rapidly produced with a uniform size and shape under ambient conditions. The synthesized nanoparticles were characterized using techniques such as ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectrophotometry, and X-ray diffraction (XRD) analysis to confirm their size (average size 60.4 ± 8.5 nm), morphology, and crystalline structure. Subsequently, the CCF was coated with these AgNPs using an eco-friendly deposition method. The mechanical properties of the treated fabric were assessed to ensure that the coating process did not compromise the fabric’s integrity or safety for human use. The results indicated that the CCF–BP–AgNPs retained its mechanical strength and exhibited no cytotoxic effects, regarding it suitable for various applications in healthcare, apparel, and household textiles. The antibacterial activity of the CCF–BP–AgNPs was evaluated by measuring zone inhibition against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The photocatalytic activity of the coated cloth was assessed by observing the breakdown of organic dye Congo Red (CR) in simulated sunlight. Interestingly, the CCF–BP–AgNPs demonstrated effective photocatalytic degradation of CR, revealing its potential for wastewater treatment and environmental remediation applications. The fabric’s antimicrobial properties remained intact throughout the photocatalytic process, enabling disinfection and pollutant breakdown to occur simultaneously.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.