Self-adjusting resilient control plane for virtual software-defined optical networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Optical Switching and Networking Pub Date : 2024-11-08 DOI:10.1016/j.osn.2024.100792
Ferenc Mogyorósi, Péter Babarczi, Alija Pašić
{"title":"Self-adjusting resilient control plane for virtual software-defined optical networks","authors":"Ferenc Mogyorósi,&nbsp;Péter Babarczi,&nbsp;Alija Pašić","doi":"10.1016/j.osn.2024.100792","DOIUrl":null,"url":null,"abstract":"<div><div>Optical networks must promptly respond to failures and efficiently handle dynamic traffic in order to fulfill their role as a critical infrastructure. Leveraging network softwarization and virtualization, virtual software-defined networks offer sufficient flexibility towards this goal by sharing the physical infrastructure among multiple tenants whose traffic must traverse the network hypervisor. In a resilient optical control plane each switch must be assigned to a primary and backup hypervisor instance through short control paths, which challenge will be addressed in this paper. First, we propose an intelligent greedy hypervisor placement heuristic which maximizes acceptance ratio for current, and preparedness for future requests. Secondly, we introduce a graph neural network model that can be seamlessly integrated with either our integer linear program or heuristic method to yield high-quality placements in significantly less time compared to our prior solutions. This enhancement renders our approach applicable to larger networks, significantly expanding its practical utility. Finally, we propose a self-adjusting hypervisor migration strategy, which continuously adapts the placement to the dynamically changing virtual network requests, thus, ensuring service continuity by avoiding frequent control plane reconfigurations. Through simulations we show that our hypervisor placement and migration strategies provide a balanced control load while they can handle a wide variety of changes.</div></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"55 ","pages":"Article 100792"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427724000225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical networks must promptly respond to failures and efficiently handle dynamic traffic in order to fulfill their role as a critical infrastructure. Leveraging network softwarization and virtualization, virtual software-defined networks offer sufficient flexibility towards this goal by sharing the physical infrastructure among multiple tenants whose traffic must traverse the network hypervisor. In a resilient optical control plane each switch must be assigned to a primary and backup hypervisor instance through short control paths, which challenge will be addressed in this paper. First, we propose an intelligent greedy hypervisor placement heuristic which maximizes acceptance ratio for current, and preparedness for future requests. Secondly, we introduce a graph neural network model that can be seamlessly integrated with either our integer linear program or heuristic method to yield high-quality placements in significantly less time compared to our prior solutions. This enhancement renders our approach applicable to larger networks, significantly expanding its practical utility. Finally, we propose a self-adjusting hypervisor migration strategy, which continuously adapts the placement to the dynamically changing virtual network requests, thus, ensuring service continuity by avoiding frequent control plane reconfigurations. Through simulations we show that our hypervisor placement and migration strategies provide a balanced control load while they can handle a wide variety of changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于虚拟软件定义光网络的自调整弹性控制平面
光网络必须对故障做出及时响应,并有效处理动态流量,才能发挥其作为关键基础设施的作用。利用网络软化和虚拟化,虚拟软件定义网络通过在多个租户之间共享物理基础设施,为实现这一目标提供了足够的灵活性,而这些租户的流量必须穿越网络管理程序。在弹性光控制平面中,每个交换机都必须通过短控制路径分配给一个主管理程序实例和一个备份管理程序实例。首先,我们提出了一种智能贪婪管理程序放置启发式,它能最大限度地提高当前请求的接受率,并为未来请求做好准备。其次,我们引入了图神经网络模型,该模型可与我们的整数线性规划或启发式方法无缝集成,与我们之前的解决方案相比,能在更短的时间内实现高质量的放置。这一改进使我们的方法适用于更大的网络,大大扩展了其实用性。最后,我们提出了一种可自我调整的管理程序迁移策略,该策略可根据动态变化的虚拟网络请求持续调整位置,从而通过避免频繁的控制平面重新配置来确保服务的连续性。通过模拟,我们证明了我们的管理程序放置和迁移策略能够提供均衡的控制负载,同时能够处理各种变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
期刊最新文献
Energy efficient resource aware protection with rapid failure recovery in cloud-ready elastic optical networks Modeling and upgrade of disaster-resilient interdependent networks using machine learning Self-adjusting resilient control plane for virtual software-defined optical networks NFV recovery strategies for critical services after massive failures in optical networks Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1