{"title":"Concurrent multiscale modelling of woven fabrics: Using beam finite elements with contact at mesoscale","authors":"Celso Jaco Faccio Júnior , Vijay Nandurdikar , Alfredo Gay Neto , Ajay B. Harish","doi":"10.1016/j.finel.2024.104274","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behaviour of textile materials, fundamental to textile composites, is critical for designing advanced material solutions. Mechanical modelling of textiles is highly complex due to the interactions between yarns, resulting in distinct nonlinear characteristics for different textile patterns. Therefore, engineering methods are essential for analysing loading scenarios and integrating decisions about textile patterns, their alignment, and other factors into the design process. One potential approach is the use of multiscale analysis. We present a novel approach for multiscale modelling in this context. Our approach models the mesoscale using beam elements and enhanced contact models to capture the interactions between yarns, while the macroscale employs solid elements with material non-linearity. This developed approach is verified by comparing pure mesoscale and multiscale results using uniaxial, biaxial, and picture frame tests. Additionally, the applicability of the multiscale method is demonstrated under more complex loading conditions. This proposal aims to model the overall mechanical response of textile patterns under complex loading conditions and can be used as a tool to evaluate the mechanical behaviour of textiles comprehensively.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104274"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001689","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical behaviour of textile materials, fundamental to textile composites, is critical for designing advanced material solutions. Mechanical modelling of textiles is highly complex due to the interactions between yarns, resulting in distinct nonlinear characteristics for different textile patterns. Therefore, engineering methods are essential for analysing loading scenarios and integrating decisions about textile patterns, their alignment, and other factors into the design process. One potential approach is the use of multiscale analysis. We present a novel approach for multiscale modelling in this context. Our approach models the mesoscale using beam elements and enhanced contact models to capture the interactions between yarns, while the macroscale employs solid elements with material non-linearity. This developed approach is verified by comparing pure mesoscale and multiscale results using uniaxial, biaxial, and picture frame tests. Additionally, the applicability of the multiscale method is demonstrated under more complex loading conditions. This proposal aims to model the overall mechanical response of textile patterns under complex loading conditions and can be used as a tool to evaluate the mechanical behaviour of textiles comprehensively.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.