Investigation of GLM detections of negative continuing currents observed by high-speed video and narrow-band 777 nm photometer

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Electric Power Systems Research Pub Date : 2024-11-17 DOI:10.1016/j.epsr.2024.111250
J. Roncancio, J. Montanyà, J. López, M. Urbani, O. van der Velde
{"title":"Investigation of GLM detections of negative continuing currents observed by high-speed video and narrow-band 777 nm photometer","authors":"J. Roncancio,&nbsp;J. Montanyà,&nbsp;J. López,&nbsp;M. Urbani,&nbsp;O. van der Velde","doi":"10.1016/j.epsr.2024.111250","DOIUrl":null,"url":null,"abstract":"<div><div>Lightning flashes with continuing currents are characterized by high energy transfer to ground that produces severe damage to electric power systems. Novel space-based optical lightning detection systems offer new possibilities to identify flashes with continuing currents. In this work, we analyze the Geostationary Lightning Mapper (GLM) detections of ten negative cloud-to-ground flashes observed from ground by a high-speed camera and a photometer. Results show that 10 out of 25 of the observed negative CG flashes produced continuing currents. In 6 out of 11 of the observed continuing currents, GLM provided more than four consecutive detections of events. The average duration of continuous detection of GLM events during continuing currents represents 10 % of the total duration of the continuing currents. The GLM detection limits compared with ground-based-optical instruments is related to the GLM sensitivity threshold. Additional Colombia Lightning Mapping Array data revealed that in-cloud positive leaders associated with the continuing currents propagate at low altitudes, corresponding to the midlevel negative charge region. The development of these leaders at low altitudes, along with weaker negative continuing currents levels compared to positive flashes, makes them challenging to detect by GLM. This work provides insights into the interpretation of space-based continuing currents optical detection.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"239 ","pages":"Article 111250"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624011362","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Lightning flashes with continuing currents are characterized by high energy transfer to ground that produces severe damage to electric power systems. Novel space-based optical lightning detection systems offer new possibilities to identify flashes with continuing currents. In this work, we analyze the Geostationary Lightning Mapper (GLM) detections of ten negative cloud-to-ground flashes observed from ground by a high-speed camera and a photometer. Results show that 10 out of 25 of the observed negative CG flashes produced continuing currents. In 6 out of 11 of the observed continuing currents, GLM provided more than four consecutive detections of events. The average duration of continuous detection of GLM events during continuing currents represents 10 % of the total duration of the continuing currents. The GLM detection limits compared with ground-based-optical instruments is related to the GLM sensitivity threshold. Additional Colombia Lightning Mapping Array data revealed that in-cloud positive leaders associated with the continuing currents propagate at low altitudes, corresponding to the midlevel negative charge region. The development of these leaders at low altitudes, along with weaker negative continuing currents levels compared to positive flashes, makes them challenging to detect by GLM. This work provides insights into the interpretation of space-based continuing currents optical detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高速视频和窄带 777 nm 光度计观测负续流的 GLM 检测研究
持续电流闪电的特点是向地面传递高能量,对电力系统造成严重破坏。新型天基光学闪电探测系统为识别带持续电流的闪电提供了新的可能性。在这项工作中,我们分析了地球静止闪电成像仪(GLM)对从地面用高速照相机和光度计观测到的 10 次负云层对地闪电的探测结果。结果表明,在观测到的 25 次负云层对地闪光中,有 10 次产生了持续电流。在观测到的 11 次持续电流中,有 6 次 GLM 对事件进行了超过 4 次的连续探测。在持续电流中连续探测到 GLM 事件的平均持续时间占持续电流总持续时间的 10%。与地基光学仪器相比,全球定位系统的探测极限与全球定位系统的灵敏度阈值有关。哥伦比亚闪电绘图阵列的其他数据显示,与续流相关的云内正引线在低空传播,与中层负电荷区域相对应。与正闪相比,这些云内正引线在低海拔地区的发展以及较弱的持续负电流水平,使其很难被 GLM 检测到。这项工作为解释天基续流光学探测提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
期刊最新文献
Electromechanical analysis of underbuilt wire use in transmission lines Optimal power flow solution via noise-resilient quantum interior-point methods Protection without current transformers for electrical installations with three-phase bus ducts Joint trading of energy and reserve considering microgrid agent fraudulent behaviors Aggregated vulnerability assessment of power transmission lines under operational and hurricane induced outages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1