Ye Zhang , Yifan Shan , Faran Chang , Yan Liang , Xiangyu Zhang , Guowei Wang , Donghai Wu , Dongwei Jiang , Hongyue Hao , Yingqiang Xu , Haiqiao Ni , Dan Lu , Zhichuan Niu
{"title":"Improvement of mid-wavelength InAs/InAsSb nBn infrared detectors performance through interface control","authors":"Ye Zhang , Yifan Shan , Faran Chang , Yan Liang , Xiangyu Zhang , Guowei Wang , Donghai Wu , Dongwei Jiang , Hongyue Hao , Yingqiang Xu , Haiqiao Ni , Dan Lu , Zhichuan Niu","doi":"10.1016/j.infrared.2024.105619","DOIUrl":null,"url":null,"abstract":"<div><div>We report our study to optimize the growth of mid-wavelength InAs/InAsSb nBn infrared detectors through interface control method with AlSb/AlAs superlattices as electron barrier. The dark current model was employed to investigate the dominant dark current mechanism at various operating temperatures. We extracted the minority carrier lifetime of InAs/InAsSb material grown by different interface growth methods. Electrical and optical characterizations indicated superior performance of the device grown by migration-enhanced epitaxy (MEE) with a 3 s As and Sb soak time. With −0.3 V applied bias and 150 K operating temperature, the optimal device shown a dark current density of 8.95 × 10<sup>−6</sup> A/cm<sup>2</sup> and peak specific detectivity of 7.12 × 10<sup>11</sup> cm Hz<sup>1/2</sup>/W at 3.8 µm.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105619"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005036","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We report our study to optimize the growth of mid-wavelength InAs/InAsSb nBn infrared detectors through interface control method with AlSb/AlAs superlattices as electron barrier. The dark current model was employed to investigate the dominant dark current mechanism at various operating temperatures. We extracted the minority carrier lifetime of InAs/InAsSb material grown by different interface growth methods. Electrical and optical characterizations indicated superior performance of the device grown by migration-enhanced epitaxy (MEE) with a 3 s As and Sb soak time. With −0.3 V applied bias and 150 K operating temperature, the optimal device shown a dark current density of 8.95 × 10−6 A/cm2 and peak specific detectivity of 7.12 × 1011 cm Hz1/2/W at 3.8 µm.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.