Pub Date : 2024-11-02DOI: 10.1016/j.infrared.2024.105622
Ultrafast fiber laser, a vital tool in both science and industry, exhibits two distinct pulse states: the steady soliton (SS) and the breathing soliton (BS). While these states have been extensively studied individually, understanding the complex transition between them is crucial for controlling lasing states effectively. Herein, our experimental observations reveal an intermediate state that toggles between SS and BS, enabled by the dispersive Fourier transform technique. We find that energy hop and decaying breathing processes, driven respectively by the energy quantization effect and Q-switched modulation, govern this transition. Additionally, we observe that the transition between different BS states primarily involves a pure decaying breathing process. Numerical simulations are used to generate similar transition dynamics in a model that combines equations describing the population inversion in a mode-locked laser. This study sheds light on the transition dynamics in non-equilibrium systems, offering insights for intelligently manipulating lasing states.
超快光纤激光器是科学和工业领域的重要工具,它有两种截然不同的脉冲状态:稳定孤子(SS)和呼吸孤子(BS)。虽然对这两种状态进行了广泛的单独研究,但了解它们之间的复杂转变对于有效控制激光状态至关重要。在这里,我们的实验观察揭示了一种在 SS 和 BS 之间切换的中间状态,并通过色散傅立叶变换技术得以实现。我们发现,由能量量化效应和 Q 开关调制分别驱动的能量跳跃和衰减呼吸过程控制着这种过渡。此外,我们还观察到不同 BS 状态之间的转换主要涉及纯衰减呼吸过程。通过数值模拟,我们在一个结合了模式锁定激光器中种群反转描述方程的模型中生成了类似的过渡动力学。这项研究揭示了非平衡系统中的过渡动力学,为智能操纵激光状态提供了启示。
{"title":"Intermediate state between steady and breathing solitons in fiber lasers","authors":"","doi":"10.1016/j.infrared.2024.105622","DOIUrl":"10.1016/j.infrared.2024.105622","url":null,"abstract":"<div><div>Ultrafast fiber laser, a vital tool in both science and industry, exhibits two distinct pulse states: the steady soliton (SS) and the breathing soliton (BS). While these states have been extensively studied individually, understanding the complex transition between them is crucial for controlling lasing states effectively. Herein, our experimental observations reveal an intermediate state that toggles between SS and BS, enabled by the dispersive Fourier transform technique. We find that energy hop and decaying breathing processes, driven respectively by the energy quantization effect and Q-switched modulation, govern this transition. Additionally, we observe that the transition between different BS states primarily involves a pure decaying breathing process. Numerical simulations are used to generate similar transition dynamics in a model that combines equations describing the population inversion in a mode-locked laser. This study sheds light on the transition dynamics in non-equilibrium systems, offering insights for intelligently manipulating lasing states.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.infrared.2024.105620
VO2-based films show great potential applications in thermochromic smart windows. However, enhancing luminous transmittance (Tlum) while maintaining high solar modulation ability (ΔTsol) remains a formidable challenge. Here, we present a novel VO2/Cu-Al nanoparticles (NPs)/VO2 composite film structure, seamlessly integrating Cu-Al bimetallic NPs within VO2 films by pulsed laser deposition on alkali-free glass substrates. The content of Cu-Al NPs in the composite films is controlled by the pulse number (Np) applied to the Cu-Al alloy target. X-ray diffraction results indicate that the crystallinity of VO2 films is significantly enhanced by the incorporation of an appropriate amount of Cu-Al NPs. The SEM characterization results revealed that the particle size of VO2 composite films initially increases to approximately 131 nm and subsequently decreases to around 120 nm as Np increases, with a concurrent transition in particle shape from quasi-circular to elongated. The Tlum and ΔTsol of the resulting composite films were dramatically improved to 71.6 % and 9.5 %, respectively, when Np was 300. These enhanced thermochromic properties are attributed to the localized surface plasmon resonance (LSPR) of the VO2 particles. This research opens up a promising avenue for the convenient production of customized high-quality VO2 films tailored for smart window applications.
{"title":"Improving the thermochromic performance of VO2 films by embedding Cu-Al nanoparticles as heterogeneous nucleation cores in the VO2/VO2 bilayer structure","authors":"","doi":"10.1016/j.infrared.2024.105620","DOIUrl":"10.1016/j.infrared.2024.105620","url":null,"abstract":"<div><div>VO<sub>2</sub>-based films show great potential applications in thermochromic smart windows. However, enhancing luminous transmittance (<em>T<sub>lum</sub></em>) while maintaining high solar modulation ability (<em>ΔT<sub>sol</sub></em>) remains a formidable challenge. Here, we present a novel VO<sub>2</sub>/Cu-Al nanoparticles (NPs)/VO<sub>2</sub> composite film structure, seamlessly integrating Cu-Al bimetallic NPs within VO<sub>2</sub> films by pulsed laser deposition on alkali-free glass substrates. The content of Cu-Al NPs in the composite films is controlled by the pulse number (<em>N<sub>p</sub></em>) applied to the Cu-Al alloy target. X-ray diffraction results indicate that the crystallinity of VO<sub>2</sub> films is significantly enhanced by the incorporation of an appropriate amount of Cu-Al NPs. The SEM characterization results revealed that the particle size of VO<sub>2</sub> composite films initially increases to approximately 131 nm and subsequently decreases to around 120 nm as <em>N<sub>p</sub></em> increases, with a concurrent transition in particle shape from quasi-circular to elongated. The <em>T<sub>lum</sub></em> and <em>ΔT<sub>sol</sub></em> of the resulting composite films were dramatically improved to 71.6 % and 9.5 %, respectively, when <em>N<sub>p</sub></em> was 300. These enhanced thermochromic properties are attributed to the localized surface plasmon resonance (LSPR) of the VO<sub>2</sub> particles. This research opens up a promising avenue for the convenient production of customized high-quality VO<sub>2</sub> films tailored for smart window applications.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.infrared.2024.105614
With the concept of SWaP-C (size, weight, power, and cost), a light, small, low-cost, and high-performance uncooled infrared optical zooming imaging system is pursued. However, the traditional mechanical optical zooming method makes it difficult to meet those requirements. In this paper, a compact uncooled long-wave infrared continuous zooming imaging system using the Alvarez lens actuated by dielectric elastomer is proposed. The infrared zoom imaging system mainly consists of two pairs of infrared Alvarez lenses, an adjustable optical stop, focusing lenses, and an infrared detector. The first pair of infrared Alvarez lenses serves as the zoom group and the second pair serves as the compensation group. The infrared Alvarez lenses are fabricated by five-axis diamond turning and milling technology. The experiment results show that when the dielectric elastomer can provide a lateral displacement of 1.44 mm to the first pair of infrared Alvarez lenses and a lateral displacement of 1.03 mm to the second pair of infrared Alvarez lenses. The infrared continuous zooming imaging system covers the long-wave band of 8 ∼ 12 µm. The zoom ratio can be changed from 5 × to 15 × and the F-number is 2.0. The total optical length of the proposed system is less than 80 mm. The resolution of the infrared detector is 640 × 512 with a pixel spacing of 17 µm. The dynamic response time testing revealed that the rise and fall times are 132 ms and 92 ms, respectively. The proposed long-wave infrared continuous zooming imaging system can be used in miniaturized devices such as UAV equipment and thermal imaging cameras in the future.
{"title":"Dielectric-elastomer-driven long-wave infrared Alvarez lenses for continuous zooming imaging","authors":"","doi":"10.1016/j.infrared.2024.105614","DOIUrl":"10.1016/j.infrared.2024.105614","url":null,"abstract":"<div><div>With the concept of SWaP-C (size, weight, power, and cost), a light, small, low-cost, and high-performance uncooled infrared optical zooming imaging system is pursued. However, the traditional mechanical optical zooming method makes it difficult to meet those requirements. In this paper, a compact uncooled long-wave infrared continuous zooming imaging system using the Alvarez lens actuated by dielectric elastomer is proposed. The infrared zoom imaging system mainly consists of two pairs of infrared Alvarez lenses, an adjustable optical stop, focusing lenses, and an infrared detector. The first pair of infrared Alvarez lenses serves as the zoom group and the second pair serves as the compensation group. The infrared Alvarez lenses are fabricated by five-axis diamond turning and milling technology. The experiment results show that when the dielectric elastomer can provide a lateral displacement of 1.44 mm to the first pair of infrared Alvarez lenses and a lateral displacement of 1.03 mm to the second pair of infrared Alvarez lenses. The infrared continuous zooming imaging system covers the long-wave band of 8 ∼ 12 µm. The zoom ratio can be changed from 5 × to 15 × and the F-number is 2.0. The total optical length of the proposed system is less than 80 mm. The resolution of the infrared detector is 640 × 512 with a pixel spacing of 17 µm. The dynamic response time testing revealed that the rise and fall times are 132 ms and 92 ms, respectively. The proposed long-wave infrared continuous zooming imaging system can be used in miniaturized devices such as UAV equipment and thermal imaging cameras in the future.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.infrared.2024.105611
Convolutional preprocessing is feasible for feature extraction and accurate recognition. In-sensor computing, which requires a photodetector with a computation function, is a potential candidate for hardware-implemented preprocessing. However, limited by the high carrier concentration in infrared sensing materials, reconfigurable manipulation of photocarriers is hardly complemented. Thus, previous works mostly focused on preprocessing in the visible range. Here, we propose a gate-tunable BP/MoS2 heterostructure. With an elaborate design on the material’s thickness, the depletion region can be precisely controlled, resulting in multiple and reconfigurable responsivity states. With a sharp and clean interface, our device shows strong linear dependence over the broadband spectrum, which is the prerequisite for constructing convolutional kernels. Furthermore, observing the maximum photocurrent in the Vg sweeping process demonstrates strong regulation of carrier concentration in the infrared sensing material, BP layer. Since it has superior performance in high linearity and multiple states construction, our device is suitable for realizing computation in photodetector for convolutional preprocessing, underscoring its superiority in intelligent infrared perception and preprocessing.
卷积预处理对于特征提取和准确识别是可行的。传感器内计算需要一个具有计算功能的光电探测器,是硬件实施预处理的潜在候选方案。然而,受限于红外传感材料中的高载流子浓度,光载流子的可重构操作很难得到补充。因此,以前的工作主要集中在可见光范围内的预处理。在这里,我们提出了一种栅极可调谐 BP/MoS2 异质结构。通过对材料厚度的精心设计,耗尽区可以得到精确控制,从而产生多种可重新配置的响应状态。由于界面清晰整洁,我们的器件在宽带光谱上显示出很强的线性依赖性,这是构建卷积核的先决条件。此外,通过观察 Vg 扫频过程中的最大光电流,我们还发现红外传感材料 BP 层中的载流子浓度具有很强的调节能力。由于该器件在高线性度和多态构建方面表现出色,因此适合在光电探测器中实现用于卷积预处理的计算,从而凸显其在智能红外感知和预处理方面的优越性。
{"title":"Gate-tunable in-sensor computing vdW heterostructures for infrared photodetection","authors":"","doi":"10.1016/j.infrared.2024.105611","DOIUrl":"10.1016/j.infrared.2024.105611","url":null,"abstract":"<div><div>Convolutional preprocessing is feasible for feature extraction and accurate recognition. In-sensor computing, which requires a photodetector with a computation function, is a potential candidate for hardware-implemented preprocessing. However, limited by the high carrier concentration in infrared sensing materials, reconfigurable manipulation of photocarriers is hardly complemented. Thus, previous works mostly focused on preprocessing in the visible range. Here, we propose a gate-tunable BP/MoS<sub>2</sub> heterostructure. With an elaborate design on the material’s thickness, the depletion region can be precisely controlled, resulting in multiple and reconfigurable responsivity states. With a sharp and clean interface, our device shows strong linear dependence over the broadband spectrum, which is the prerequisite for constructing convolutional kernels. Furthermore, observing the maximum photocurrent in the <em>V<sub>g</sub></em> sweeping process demonstrates strong regulation of carrier concentration in the infrared sensing material, BP layer. Since it has superior performance in high linearity and multiple states construction, our device is suitable for realizing computation in photodetector for convolutional preprocessing, underscoring its superiority in intelligent infrared perception and preprocessing.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.infrared.2024.105613
The conventional infrared polarization models ignore the absorption and scattering of infrared light within the coating materials, as well as directional diffuse reflection effect of infrared radiation on the coating surface, which have the limitation for the description of infrared polarization characteristic of coating materials. An improved infrared polarized bidirectional reflectance distribution function (pBRDF) model is proposed based on the microfacet theory, which integrates a volume scattering component developed from the Kubelka-Munk theory, a multiple reflection component and a specular reflection component. This model is more consistent with the infrared polarization characteristics within the actual coating materials. The expression of degree of linear polarization (DoLP) of the infrared radiation is derived. The infrared polarization data of the silver and brown coatings at different measuring angles are acquired by the infrared polarization imaging system, and the model parameters are inverted using the least squares inverse performance method. The simulated and measured results for our coating samples show that the DoLP values simulated by the improved infrared pBRDF model are found in a good agreement with the measurements. The infrared DoLP does not change with the azimuth angle, and mainly influenced by the detection zenith angle, which has a great potential for material classification, polarization remote sensing and infrared scene modeling.
{"title":"An improved infrared polarization model considering the volume scattering effect for coating materials","authors":"","doi":"10.1016/j.infrared.2024.105613","DOIUrl":"10.1016/j.infrared.2024.105613","url":null,"abstract":"<div><div>The conventional infrared polarization models ignore the absorption and scattering of infrared light within the coating materials, as well as directional diffuse reflection effect of infrared radiation on the coating surface, which have the limitation for the description of infrared polarization characteristic of coating materials. An improved infrared polarized bidirectional reflectance distribution function (pBRDF) model is proposed based on the microfacet theory, which integrates a volume scattering component developed from the Kubelka-Munk theory, a multiple reflection component and a specular reflection component. This model is more consistent with the infrared polarization characteristics within the actual coating materials. The expression of degree of linear polarization (DoLP) of the infrared radiation is derived. The infrared polarization data of the silver and brown coatings at different measuring angles are acquired by the infrared polarization imaging system, and the model parameters are inverted using the least squares inverse performance method. The simulated and measured results for our coating samples show that the DoLP values simulated by the improved infrared pBRDF model are found in a good agreement with the measurements. The infrared DoLP does not change with the azimuth angle, and mainly influenced by the detection zenith angle, which has a great potential for material classification, polarization remote sensing and infrared scene modeling.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.infrared.2024.105609
Although stochastic configuration networks(SCN) has the universal approximation property and faster learning speed,during the process of model construction,the randomness of weight and biases assignment as well as the uncertainty of model structure lead to instability. Inspired by bagging,an ensemble model named bagging SCN is proposed to address the limitation of the single model. Firstly,multiple different training subsets are extracted by bootstrap sampling. Then the SCN submodels are trained on each subset. Finally,the median output of these submodels is taken as the final prediction. Predictions made by bagging SCN are tested on two public datasets. The performance of bagging SCN is then compared with other techniques,including SCN,bagging SCN with other aggregating rules. Experimental results demonstrate that bagging SCN proposed in this study exhibits good stability and high prediction accuracy,making it suitable for quantitative analysis of spectral data.
{"title":"Spectral data analysis based on bagging stochastic configuration networks","authors":"","doi":"10.1016/j.infrared.2024.105609","DOIUrl":"10.1016/j.infrared.2024.105609","url":null,"abstract":"<div><div>Although stochastic configuration networks(SCN) has the universal approximation property and faster learning speed,during the process of model construction,the randomness of weight and biases assignment as well as the uncertainty of model structure lead to instability. Inspired by bagging,an ensemble model named bagging SCN is proposed to address the limitation of the single model. Firstly,multiple different training subsets are extracted by bootstrap sampling. Then the SCN submodels are trained on each subset. Finally,the median output of these submodels is taken as the final prediction. Predictions made by bagging SCN are tested on two public datasets. The performance of bagging SCN is then compared with other techniques,including SCN,bagging SCN with other aggregating rules. Experimental results demonstrate that bagging SCN proposed in this study exhibits good stability and high prediction accuracy,making it suitable for quantitative analysis of spectral data.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.infrared.2024.105597
Heterodyne coherent phase-sensitive optical time-domain reflectometry(-OTDR) requires a higher data sampling rate to demodulate phase in the “distance” direction effectively. Aiming at the problem of large amount of demodulated data, we propose a phase demodulation method that can effectively recover disturbance information from ultra-low sampling data. This method demodulates the phase of the two-dimensional reconstructed signal in the “time” direction. Thus, the influence of spectrum aliasing in the “distance” direction caused by undersampling is avoided. The undersampling rate is not limited by the spectrum aliasing effect of the detected signal when using this method to demodulate phase. Therefore, accurate phase information can be retrieved under ultra-low sampling rates, significantly reducing the data for phase demodulation in heterodyne coherent -OTDR. In the experiment, three sampling rates (100 MSa/s, 10 MSa/s, 1 MSa/s) within the restricted area of the traditional undersampling demodulation method were selected to acquire data, and the proposed method can also accurately demodulate phase information.
{"title":"Phase Demodulation under Ultra-low sampling rate in heterodyne coherent Φ-OTDR","authors":"","doi":"10.1016/j.infrared.2024.105597","DOIUrl":"10.1016/j.infrared.2024.105597","url":null,"abstract":"<div><div>Heterodyne coherent phase-sensitive optical time-domain reflectometry(<span><math><mi>Φ</mi></math></span>-OTDR) requires a higher data sampling rate to demodulate phase in the “distance” direction effectively. Aiming at the problem of large amount of demodulated data, we propose a phase demodulation method that can effectively recover disturbance information from ultra-low sampling data. This method demodulates the phase of the two-dimensional reconstructed signal in the “time” direction. Thus, the influence of spectrum aliasing in the “distance” direction caused by undersampling is avoided. The undersampling rate is not limited by the spectrum aliasing effect of the detected signal when using this method to demodulate phase. Therefore, accurate phase information can be retrieved under ultra-low sampling rates, significantly reducing the data for phase demodulation in heterodyne coherent <span><math><mi>Φ</mi></math></span>-OTDR. In the experiment, three sampling rates (100 MSa/s, 10 MSa/s, 1 MSa/s) within the restricted area of the traditional undersampling demodulation method were selected to acquire data, and the proposed method can also accurately demodulate phase information.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.infrared.2024.105610
Water content significantly impacts the physical properties of sandstone. Studying the properties of water-bearing sandstone helps understand its behavior in seismic wave propagation, groundwater flow, and hydrocarbon reservoirs. This paper investigates the optical and dielectric properties of water-bearing quartz sandstone and arkose using terahertz time-domain spectroscopy (THz-TDS). The intrinsic dielectric permittivities were extracted using effective medium theory and fitted with the Debye model. Results show that increasing water content extends the slow relaxation time from 2.746 ps to 3.791 ps and the fast relaxation time from 0.032 ps to 0.282 ps. Compared to quartz sandstone, arkose shows a slower increase in dielectric permittivity due to restricted water molecule movement caused by its higher ion content, with the analysis focusing on the frequency dependence of the polarizability of the internal components.
{"title":"Optical and dielectric properties of water-bearing sandstones in the terahertz range","authors":"","doi":"10.1016/j.infrared.2024.105610","DOIUrl":"10.1016/j.infrared.2024.105610","url":null,"abstract":"<div><div>Water content significantly impacts the physical properties of sandstone. Studying the properties of water-bearing sandstone helps understand its behavior in seismic wave propagation, groundwater flow, and hydrocarbon reservoirs. This paper investigates the optical and dielectric properties of water-bearing quartz sandstone and arkose using terahertz time-domain spectroscopy (THz-TDS). The intrinsic dielectric permittivities were extracted using effective medium theory and fitted with the Debye model. Results show that increasing water content extends the slow relaxation time from 2.746 ps to 3.791 ps and the fast relaxation time from 0.032 ps to 0.282 ps. Compared to quartz sandstone, arkose shows a slower increase in dielectric permittivity due to restricted water molecule movement caused by its higher ion content, with the analysis focusing on the frequency dependence of the polarizability of the internal components.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.infrared.2024.105592
LiDAR technology has garnered significant attention in recent years due to its superior directivity, high resolution, and precise 3D information acquisition capabilities, making it indispensable in navigation systems. Among its variants, single-photon LiDAR stands out for maritime applications, owing to its reduced power consumption and extended detection range. However, the high sensitivity of single-photon detectors often results in substantial noise, necessitating effective denoising before data can be utilized for identification, tracking, and other purposes. In this study, we present a novel 128-line, 1550 nm shipborne long-range single-photon LiDAR system, with data collected and analyzed in maritime environments. This system contends with challenges such as a large dynamic range, abundant noise photons, and the complexity of sea surface conditions. To address these issues, we propose an efficient and adaptive denoising algorithm based on the k-th nearest neighbor (KNN) methodology. By examining the distribution characteristics of signal and noise photons, our approach enables target extraction even under conditions of intense noise and sparse signals. Our method exhibits robust adaptability across various detection scenarios. Experimental evaluations demonstrate its efficacy, accurately identifying targets at distances of 3.2 km in clear weather and 1.6 km in foggy conditions.
{"title":"Marine remote target signal extraction based on 128 line-array single photon LiDAR","authors":"","doi":"10.1016/j.infrared.2024.105592","DOIUrl":"10.1016/j.infrared.2024.105592","url":null,"abstract":"<div><div>LiDAR technology has garnered significant attention in recent years due to its superior directivity, high resolution, and precise 3D information acquisition capabilities, making it indispensable in navigation systems. Among its variants, single-photon LiDAR stands out for maritime applications, owing to its reduced power consumption and extended detection range. However, the high sensitivity of single-photon detectors often results in substantial noise, necessitating effective denoising before data can be utilized for identification, tracking, and other purposes. In this study, we present a novel 128-line, 1550 nm shipborne long-range single-photon LiDAR system, with data collected and analyzed in maritime environments. This system contends with challenges such as a large dynamic range, abundant noise photons, and the complexity of sea surface conditions. To address these issues, we propose an efficient and adaptive denoising algorithm based on the k-th nearest neighbor (KNN) methodology. By examining the distribution characteristics of signal and noise photons, our approach enables target extraction even under conditions of intense noise and sparse signals. Our method exhibits robust adaptability across various detection scenarios. Experimental evaluations demonstrate its efficacy, accurately identifying targets at distances of 3.2 km in clear weather and 1.6 km in foggy conditions.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-20DOI: 10.1016/j.infrared.2024.105599
The array waveguide grating (AWG) demodulation method has been widely used in recent years. However, the resolution and total measurement range of AWG-based Fiber Bragg Grating (FBG) interrogation systems are limited by the output characteristics of AWGs. We designed and fabricated a multi-channel SiO2-based AWG as a key component of FBG Interrogation. To increase the dynamic range of demodulation, a multimode interference coupler (MMI) structure is introduced in the middle of the input waveguide and the input slab waveguide. From the simulation results, the 3-dB bandwidth of the AWG is increased from 1.04 nm to 1.86 nm. We test the performance of the interrogation system based on this AWG. The results demonstrate that the system can achieve continuous demodulation in the C-band, with an interrogation accuracy better than 20.22 pm and a wavelength resolution of 1 pm.
{"title":"Large bandwidth array waveguide grating design for FBG interrogation system","authors":"","doi":"10.1016/j.infrared.2024.105599","DOIUrl":"10.1016/j.infrared.2024.105599","url":null,"abstract":"<div><div>The array waveguide grating (AWG) demodulation method has been widely used in recent years. However, the resolution and total measurement range of AWG-based Fiber Bragg Grating (FBG) interrogation systems are limited by the output characteristics of AWGs. We designed and fabricated a multi-channel SiO<sub>2</sub>-based AWG as a key component of FBG Interrogation. To increase the dynamic range of demodulation, a multimode interference coupler (MMI) structure is introduced in the middle of the input waveguide and the input slab waveguide. From the simulation results, the 3-dB bandwidth of the AWG is increased from 1.04 nm to 1.86 nm. We test the performance of the interrogation system based on this AWG. The results demonstrate that the system can achieve continuous demodulation in the C-band, with an interrogation accuracy better than 20.22 pm and a wavelength resolution of 1 pm.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}