Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2024-11-09 DOI:10.1016/j.pestbp.2024.106205
Caroline Fouet , Matthew J. Pinch , Fred A. Ashu , Marilene M. Ambadiang , Calmes Bouaka , Anthoni J. Batronie , Cesar A. Hernandez , Desiree E. Rios , Véronique Penlap-Beng , Colince Kamdem
{"title":"Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification","authors":"Caroline Fouet ,&nbsp;Matthew J. Pinch ,&nbsp;Fred A. Ashu ,&nbsp;Marilene M. Ambadiang ,&nbsp;Calmes Bouaka ,&nbsp;Anthoni J. Batronie ,&nbsp;Cesar A. Hernandez ,&nbsp;Desiree E. Rios ,&nbsp;Véronique Penlap-Beng ,&nbsp;Colince Kamdem","doi":"10.1016/j.pestbp.2024.106205","DOIUrl":null,"url":null,"abstract":"<div><div>New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, <em>Anopheles gambiae</em> and <em>An. coluzzii</em>, from Yaounde, Cameroon, both have the potential to develop resistance to acetamiprid through cytochrome P450-mediated detoxification. However, contrary to <em>An. coluzzii</em>, <em>An. gambiae</em> populations are evolving cross-resistance to several active ingredients facilitated by mutations of nicotinic acetylcholine receptors (nAChRs). We sequenced coding regions on the β1 and α6 nAChR subunits where variants associated with resistance to neonicotinoids or to spinosyns have been found in agricultural pests and detected no mutation in <em>An. coluzzii</em>. By contrast, six nucleotide substitutions including an amino acid change in one of the loops that modulate ligand binding and affect sensitivity were present in the resistant species, <em>An. gambiae</em>. Allele frequency distributions were consistent with the spread of beneficial mutations that likely reduce the affinity of <em>An. gambiae</em> nAChRs for synthetic modulators. Our findings provide critical information for the application and resistance management of nAChR modulators in malaria prevention.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106205"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524004383","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, both have the potential to develop resistance to acetamiprid through cytochrome P450-mediated detoxification. However, contrary to An. coluzzii, An. gambiae populations are evolving cross-resistance to several active ingredients facilitated by mutations of nicotinic acetylcholine receptors (nAChRs). We sequenced coding regions on the β1 and α6 nAChR subunits where variants associated with resistance to neonicotinoids or to spinosyns have been found in agricultural pests and detected no mutation in An. coluzzii. By contrast, six nucleotide substitutions including an amino acid change in one of the loops that modulate ligand binding and affect sensitivity were present in the resistant species, An. gambiae. Allele frequency distributions were consistent with the spread of beneficial mutations that likely reduce the affinity of An. gambiae nAChRs for synthetic modulators. Our findings provide critical information for the application and resistance management of nAChR modulators in malaria prevention.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冈比亚按蚊对新烟碱类药物的田间进化抗性与烟碱乙酰胆碱受体亚基的突变以及细胞色素 P450 介导的解毒作用有关
用于疟疾控制干预的新型杀虫剂包括烟碱乙酰胆碱受体的调节剂,这些调节剂选择性地作用于不同的亚基,导致节肢动物的敏感性不同。本研究旨在调查两种蚊子同胞野生种群对新烟碱类药物不同敏感性的分子机制。生物测定以及与胡椒基丁醚的增效剂测试表明,喀麦隆雅温得的冈比亚按蚊和科鲁兹按蚊这两个姊妹类群都有可能通过细胞色素 P450 介导的解毒作用对啶虫脒产生抗药性。然而,与 Coluzzii 不同的是,冈比亚蚁种群正在通过烟碱乙酰胆碱受体(nAChRs)的突变,进化出对多种活性成分的交叉抗性。我们对β1和α6 nAChR亚基的编码区进行了测序,在这些区域发现了与农业害虫对新烟碱类药物或刺五加产生抗性有关的变体,但在科鲁兹蚁中没有发现变异。与此相反,在冈比亚蚁中出现了六个核苷酸替换,其中一个环上的氨基酸发生了变化,这种变化会调节配体的结合并影响敏感性。等位基因频率分布与有益突变的扩散一致,有益突变可能会降低冈比亚鳗 nAChRs 对合成调节剂的亲和力。我们的研究结果为 nAChR 调节剂在疟疾预防中的应用和抗药性管理提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Melatonin protects spermatogenic cells against DNA damage and necroptosis induced by atrazine Cnaphalocrocis medinalis granulovirus regulates apoptosis by targeting AIF1 and ASPP1 through tca-miR-3885-5p and tca-miR-3897-3p to promote infection Omeprazole and its analogs exhibit insecticidal potencies as inhibitors of insect choline acetyltransferase Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification Mechanisms of selectivity for azadirachtin in honeybees (Apis cerana): A new strategy for avoiding thiamethoxam ingestion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1