Guo Chang , Shuang Zhang , Kaiyun Chen , Wei Zhang , Liang Li , Yongjian Zhang , Haoran Peng , Dongxiao Kan , Luhua Wang , Hailong Zhang , Wangtu Huo
{"title":"Achieving excellent thermal transport in diamond/Cu composites by breaking bonding strength-heat transfer trade-off dilemma at the interface","authors":"Guo Chang , Shuang Zhang , Kaiyun Chen , Wei Zhang , Liang Li , Yongjian Zhang , Haoran Peng , Dongxiao Kan , Luhua Wang , Hailong Zhang , Wangtu Huo","doi":"10.1016/j.compositesb.2024.111925","DOIUrl":null,"url":null,"abstract":"<div><div>The heat transport enhancement of diamond/Cu composites, a new generation of thermal management materials, is trapped in the bonding strength-heat transfer trade-off dilemma at the interface due to the noticeable difference in physical and chemical properties between Cu and diamond. Herein, we propose a new strategy combining ultrathin interface modification and low-temperature high-pressure (LTHP) sintering process to prepare the diamond/Cu composites. With a suitable coefficient of thermal expansion (CTE) of <10 ppm/K, the obtained diamond/Cu composites exhibit an outstanding thermal conductivity (<em>k</em>) value of 763 W/m K, over 90 % of the theoretical prediction of the differential effective medium (DEM) model. Meanwhile, using a lower diamond volume fraction (45 % vs. 50%–70 %), the <em>k</em> value is higher than those by conventional powder metallurgy, meaning a substantial reduction in the cost by reducing diamond filler content. For such a highly mismatched diamond/Cu interface, we maintain a high bonding strength by lowering the thermal stress damage while achieve a high thermal conductance (<em>G</em>) of 93.5 MW/m<sup>2</sup> K by minimizing the heat transfer obstacles. The prepared interface structure is a diamond/TiC/CuTi<sub>2</sub>/Cu configuration, where the two possible heat transfer bottlenecks (the diamond/TiC interface and the TiC/CuTi<sub>2</sub> interlayer) are no longer limiting factors on the overall interface. The successful resolution to the interfacial heat transfer problem is responsible for the superior thermal transport performance of the composites. This work deals with the critical challenge for the diamond/Cu composites and offers deep insight into the improvement mechanisms of thermal transfer. The proposed strategy can be generalized to the integration of highly mismatched interfaces widely present in other composites or thermal management systems.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111925"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The heat transport enhancement of diamond/Cu composites, a new generation of thermal management materials, is trapped in the bonding strength-heat transfer trade-off dilemma at the interface due to the noticeable difference in physical and chemical properties between Cu and diamond. Herein, we propose a new strategy combining ultrathin interface modification and low-temperature high-pressure (LTHP) sintering process to prepare the diamond/Cu composites. With a suitable coefficient of thermal expansion (CTE) of <10 ppm/K, the obtained diamond/Cu composites exhibit an outstanding thermal conductivity (k) value of 763 W/m K, over 90 % of the theoretical prediction of the differential effective medium (DEM) model. Meanwhile, using a lower diamond volume fraction (45 % vs. 50%–70 %), the k value is higher than those by conventional powder metallurgy, meaning a substantial reduction in the cost by reducing diamond filler content. For such a highly mismatched diamond/Cu interface, we maintain a high bonding strength by lowering the thermal stress damage while achieve a high thermal conductance (G) of 93.5 MW/m2 K by minimizing the heat transfer obstacles. The prepared interface structure is a diamond/TiC/CuTi2/Cu configuration, where the two possible heat transfer bottlenecks (the diamond/TiC interface and the TiC/CuTi2 interlayer) are no longer limiting factors on the overall interface. The successful resolution to the interfacial heat transfer problem is responsible for the superior thermal transport performance of the composites. This work deals with the critical challenge for the diamond/Cu composites and offers deep insight into the improvement mechanisms of thermal transfer. The proposed strategy can be generalized to the integration of highly mismatched interfaces widely present in other composites or thermal management systems.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.