Laser powder bed fusion of high-strength crack-free Al7075 alloy with the in-situ formation of TiB2/Al3Ti-reinforced phases and nucleation agents

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-11-05 DOI:10.1016/j.compositesb.2024.111940
Yanzhen Liang , Quanquan Han , Zhongyang Sui , Zhenhua Zhang , Han Zhang , Heng Gu , Defan Wu , Liqiao Wang , Hanlian Liu , Rossitza Setchi
{"title":"Laser powder bed fusion of high-strength crack-free Al7075 alloy with the in-situ formation of TiB2/Al3Ti-reinforced phases and nucleation agents","authors":"Yanzhen Liang ,&nbsp;Quanquan Han ,&nbsp;Zhongyang Sui ,&nbsp;Zhenhua Zhang ,&nbsp;Han Zhang ,&nbsp;Heng Gu ,&nbsp;Defan Wu ,&nbsp;Liqiao Wang ,&nbsp;Hanlian Liu ,&nbsp;Rossitza Setchi","doi":"10.1016/j.compositesb.2024.111940","DOIUrl":null,"url":null,"abstract":"<div><div>The existence of solidification cracks caused by columnar grains in precipitation-hardened aluminium alloys limit the applicability of Al7075 components manufactured via laser powder bed fusion (LPBF) additive manufacturing. A novel approach was developed to co-incorporate submicron-sized B and micron-grade Ti6Al4V to eliminate hot cracks and to effectively transform coarse columnar grains into fine equiaxed grains, thus improving the mechanical performance of LPBF-fabricated modified Al7075 material. The grain refinement was mainly attributable to the heterogeneous nucleation promoted by the combination of in-situ-formed L1<sub>2</sub>-Al<sub>3</sub>Ti and TiB<sub>2</sub> nano-sized phases. After an optimised T6 heat treatment, excellent comprehensive mechanical properties were achieved, with a tensile strength of 460 MPa and an elongation of 13 %. This research provides an efficient and cost-effective path for addressing crack-sensitive metallic materials used for LPBF additive manufacturing processes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111940"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007522","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of solidification cracks caused by columnar grains in precipitation-hardened aluminium alloys limit the applicability of Al7075 components manufactured via laser powder bed fusion (LPBF) additive manufacturing. A novel approach was developed to co-incorporate submicron-sized B and micron-grade Ti6Al4V to eliminate hot cracks and to effectively transform coarse columnar grains into fine equiaxed grains, thus improving the mechanical performance of LPBF-fabricated modified Al7075 material. The grain refinement was mainly attributable to the heterogeneous nucleation promoted by the combination of in-situ-formed L12-Al3Ti and TiB2 nano-sized phases. After an optimised T6 heat treatment, excellent comprehensive mechanical properties were achieved, with a tensile strength of 460 MPa and an elongation of 13 %. This research provides an efficient and cost-effective path for addressing crack-sensitive metallic materials used for LPBF additive manufacturing processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光粉末床熔化高强度无裂纹 Al7075 合金,原位形成 TiB2/Al3Ti- 增强相和成核剂
沉淀硬化铝合金中存在由柱状晶粒引起的凝固裂纹,这限制了通过激光粉末床熔融(LPBF)快速成型技术制造的 Al7075 组件的适用性。为了消除热裂纹并有效地将粗大柱状晶粒转化为细小的等轴晶粒,我们开发了一种新方法,将亚微米级的 B 和微米级的 Ti6Al4V 共同结合在一起,从而改善 LPBF 制造的改性 Al7075 材料的机械性能。晶粒细化的主要原因是原位形成的 L12-Al3Ti 和 TiB2 纳米相的组合促进了异质成核。经过优化的 T6 热处理后,获得了优异的综合机械性能,抗拉强度达到 460 兆帕,伸长率为 13%。这项研究为解决 LPBF 快速成型制造工艺中使用的裂纹敏感金属材料提供了一条高效、经济的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Spider web-inspired sericin/polyacrylamide composite hydrogel with super-low hysteresis for monitoring penalty of sports competition Engineered dECM-based microsystem promotes cartilage regeneration in osteoarthritis by synergistically enhancing chondrogenesis of BMSCs and anti-inflammatory effect On demand thermal surface modification of carbon fiber for improved interfacial shear strength Personalized customization of in-plane thermal conductive networks by a novel electrospinning method Microchannels-enabled vertical alignment of hexagonal boron nitride in silicone rubber composites to achieve high through-plane thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1