3d printing of a continuous carbon fiber reinforced bronze-matrix composite using material extrusion

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-11-07 DOI:10.1016/j.compositesb.2024.111961
Mehrdad Mousapour, S Siddharth Kumar, Jouni Partanen, Mika Salmi
{"title":"3d printing of a continuous carbon fiber reinforced bronze-matrix composite using material extrusion","authors":"Mehrdad Mousapour,&nbsp;S Siddharth Kumar,&nbsp;Jouni Partanen,&nbsp;Mika Salmi","doi":"10.1016/j.compositesb.2024.111961","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of this study is to investigate, for the first time, the feasibility of 3d printing a continuous carbon fiber (CCF) reinforced metal matrix composite using a cost-effective material extrusion (MEX) technology. Notably, this paper presents a detailed analysis of the microstructure and mechanical and physical properties of a bronze matrix composite reinforced with CCF. The results reveal that CCF significantly impedes the expected densification levels of the composite's structure, causing extensive gaps between the bronze particles. However, despite the high porosity level, the composite's electrical conductivity remains relatively high, demonstrating the limited negative impact of the CCF material on the composite's conductivity. Moreover, mechanical evaluations were performed through 3-point bending and tensile tests, highlighting the composite material's advantages and limitations. The results show that the composite material exhibits an improved yield stress of 76 %, increased ultimate tensile strength of 20 %, and an extended fracture strain of 30 %. However, the flexural strength decreases by 23 % due to the presence of massive gaps formed by CCF.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111961"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135983682400773X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this study is to investigate, for the first time, the feasibility of 3d printing a continuous carbon fiber (CCF) reinforced metal matrix composite using a cost-effective material extrusion (MEX) technology. Notably, this paper presents a detailed analysis of the microstructure and mechanical and physical properties of a bronze matrix composite reinforced with CCF. The results reveal that CCF significantly impedes the expected densification levels of the composite's structure, causing extensive gaps between the bronze particles. However, despite the high porosity level, the composite's electrical conductivity remains relatively high, demonstrating the limited negative impact of the CCF material on the composite's conductivity. Moreover, mechanical evaluations were performed through 3-point bending and tensile tests, highlighting the composite material's advantages and limitations. The results show that the composite material exhibits an improved yield stress of 76 %, increased ultimate tensile strength of 20 %, and an extended fracture strain of 30 %. However, the flexural strength decreases by 23 % due to the presence of massive gaps formed by CCF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用材料挤压技术 3d 打印连续碳纤维增强青铜基复合材料
本研究的主要目的是首次研究利用经济有效的材料挤压(MEX)技术 3d 打印连续碳纤维(CCF)增强金属基复合材料的可行性。值得注意的是,本文详细分析了用 CCF 增强的青铜基复合材料的微观结构、机械性能和物理性能。结果表明,CCF 严重阻碍了复合材料结构的预期致密化水平,导致青铜颗粒之间出现大量空隙。然而,尽管孔隙率较高,复合材料的导电率仍然相对较高,这表明 CCF 材料对复合材料导电率的负面影响有限。此外,还通过三点弯曲和拉伸试验进行了机械评估,突出了复合材料的优势和局限性。结果显示,复合材料的屈服应力提高了 76%,极限拉伸强度提高了 20%,断裂应变提高了 30%。然而,由于 CCF 形成的巨大间隙的存在,抗弯强度降低了 23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Spider web-inspired sericin/polyacrylamide composite hydrogel with super-low hysteresis for monitoring penalty of sports competition Engineered dECM-based microsystem promotes cartilage regeneration in osteoarthritis by synergistically enhancing chondrogenesis of BMSCs and anti-inflammatory effect On demand thermal surface modification of carbon fiber for improved interfacial shear strength Personalized customization of in-plane thermal conductive networks by a novel electrospinning method Microchannels-enabled vertical alignment of hexagonal boron nitride in silicone rubber composites to achieve high through-plane thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1